
LH
C

b-
20

08
-0

47

LHCb note 2008-047

LPHE note 2008-010

Silicon Tracker zero-suppressed data
model and decoding

M. Needham

École Polytechnique Fédérale de Lausanne

September 11, 2008

Abstract

The Silicon Tracker zero-suppressed data model and decoding are
described. Examples of the use of the event model classes together

with checks made of the data integrity in the decoding procedure are
described. This provides a snapshot of the code at the time of

Summer 2008 (Brunel v33r2) are given.

1 Introduction

The information sent from each TELL1 readout board is stored in so called
RawBanks [1]. The format of the zero-suppressed cluster banks in the case
of the Silicon Tracker is described in [2]. The bank consists of three parts
(Fig. 1). The first part is a header that gives:

• The size of the bank in bytes.

• A unique identifier for the Tell1 board that sent the data [3].

• An error flag. This bit is set if the Tell1 board reported an error. In
this case an error bank is also sent [4].

• The PCN of the event reported by the Tell1. This is the PCN of the
first Beetle that is flagged as working in the Tell1 board configuration.

• The number of clusters in the bank.

The second section contains the channel numbers of the clusters whilst the
final part contains the ADC values of the corresponding strips. For use in the
track reconstruction, trigger and for monitoring this information is decoded
into cluster objects. During this procedure the data integrity is checked and
the online Tell1 channel numbering converted to the offline channel number-
ing described in [3].

Bank header #1

Zero suppressed data

B
an

k
bo

dy

Bank header #2

Non zero suppressed
data

Bank header #3

Error data

Transport-
Opaque Data

MEP Sub-header

Event #n+3

Event #n+2

Event #n+1

Event #n

MEP header #1

MEP Event Banks

Figure 1: Overview of the hierarchy of the MEP. Each MEP consists of a MEP header
and a number of events. The events consist of a MEP sub-header and several banks of
data. Each bank contains a bank header and the data.

ST zero suppressed bank

Pading « 0000 »,16

Pading « 00 »,8

Number of clusters ,16

Magic pattern ,16
0xCBCB

Size in byte ,16

Type,8Version,8Source ID ,16

PCN,8R,7 Error,1

Cluster
size,1

SO,1 Cluster strip position ,12

ADC, 7
EOC,1

‘0’

ISP,2

Neighbouring strip sum , 8

Cluster
size,1

SO,1 Cluster strip position ,12 ISP,2

Cluster
size,1

SO,1 Cluster strip position ,12 ISP,2

ADC, 7
EOC,1

‘1’ Neighbouring strip sum , 8

ADC, 7EOC,1
‘1’

ADC, 7EOC,1
‘1’

Neighbouring strip sum , 8

8-bit7 0LSBMSB8-bit15 8LSBMSB8-bit23 16LSBMSB8-bit31 24LSBMSB

Figure 2: ST zero-suppressed data format. The data format consists of two words bank
header, one word data header, a cluster position section and the ADC value section.

2

Figure 1: ST zero-suppressed data bank format (from [2]).

This note is structured as follows. First the offline data model is described.
Then the decoding algorithms are described. Both the data model and de-
coding software were developed in collaboration with the Velo and share
many common elements with the software described in [5].

2 Data Model

Two clusters classes are available for use offline. The first is the STLiteClus-
ter class which gives access to the information contained in the first two
sections of the RawBank format. The second is the STCluster class that

2

allows access to the full information in the RawBank. The first class is
used in the trigger and pattern recognition whilst the second is used by the
track fit and monitoring. The source code for both classes is located in the
DigiEvent package. These classes together with the STSummary 1 and
STChannelID 2 class are described in the following sections. The location
of the source code for these classes is given in Table 1.

Class Package Header Location

STCluster DigiEvent Event/STCluster.h

STLiteCluster DigiEvent Event/STLiteCluster.h

STChannelID LHCbKernel Kernel/STChannelID.h

STSummary RecEvent Event/STSummary.h

Table 1: Source code location.

2.1 STChannelID

Both cluster classes give access to a STChannelID object. This is a bit
packed word that uniquely labels every channel in the Silicon Tracker. The
following code fragments illustrate how to create and use objects of this type:

#include ”LHCb/STChannelID . h
using namespace LHCb;

// cons t ruc t an o b j e c t o f t h i s type
unsigned int s ta t i on , layer , detRegion , s e c to r , s t r i p
STChannelID chan (STChannelID : :TT, s ta t i on , layer , detRegion , s e c to r , s t r i p) ;

// ge t back the informat ion
unsigned int s t a t i o n = chan . s t a t i o n () ;
unsigned int l a y e r = chan . l a y e r () ;

Often it is useful to convert part of the STChannelID into a string. To help
in this two classes are provided in the LHCbKernel package - ITNames
and TTNames. The use of these classes is shown below:

#include ”Kernel /ITNames . h”
#include ”Kernel /ITNames . h”
using namespace LHCb;

STChannelID chan ;

1Located in RecEvent.
2Located in LHCbKernel.

3

i f (chan . isTT ()){

// pr in t the s e c t o r name
std : : cout << ”unique s e c t o r name ”

<< TTNames () . un iqueSectorToStr ing (chan) << std : : endl ;

}
else {

std : : cout << ”unique l ay e r ”
<< ITNames () . uniqueLayerToString (chan) << std : : endl ;

s td : : s t r i n g << ” j u s t the l ay e r name ”
<< ITNames () . l a y e r s (chan) << std : : endl ;

}

2.2 STLiteCluster

This class provides access to the information in the second part of the data
bank. It is used in the pattern recognition and the trigger where access
to the ADC values is not necessary and the emphasis is on the decoding
speed. Internally an object of this type is represented as a 32-bit integer
which ensures allocation. Externally users see an interface to the data which
means they do not need to know the details of the internal bit-packing. The
following code fragments illustrate how to use an object of this type:

#include ”Event/ STLiteCluster . h”
using namespace LHCb;
STLiteCluster c l u s ;

// channelID
STChannelID chan = c l u s . channelID () ;

// short−cut to s t a t i o n e t c are prov ided
unsigned int s t a t i o n = c l u s . s t a t i o n () ;

// i n t e r s t r i p f r a c t i o n : 0 . , 0 .25 , 0 .5 , 0.75
const double f r a c = c l u s . i n t e r S t r i pF r a c t i o n () ;

// c l u s t e r s i z e
const unsigned int pSize = c l u s . pseudoSize () ;

// check i f has h igh t h r e s ho l d
const bool hasHigh = c l u s . highThreshold () ;

Objects of this type are stored in a ’FastContainer’ that follows the same
philosophy of hiding the lightweight internal representation from the user.
The container has similar functionality to that provided by the STL vector
class:
using namespace LHCb;

4

// In STLiteClus ters header i s f o l l ow i n g t ypede f
// t ypede f FastClus terContainer < LHCb : : STLiteCluster , i n t > STLiteClus ters ;

typedef STLiteCluster : : STLiteClusters FastCont ;
FastCont cont ;
STLiteCluster c l u s ;
cont . push back (c l u s) ;

// i t e r a t e over the conta iner
FastCont : : c o n s t i t e r a t o r i t e r = cont . begin () ;
for (; i t e r != cont . end () ; ++i t e r){

// do something
}

A policy is also provided to find a STLiteCluster with a given channel in
the FastContainer:

using namespace LHCb;
typedef STLiteCluster : : STLiteClusters FastCont ;

STLiteCluster c l u s ;
FastCont fastCont ;
// f ind i t in the f a s t conta iner
FastCont : : i t e r a t o r i t e r =

fastCont−>f ind<FastCont : : f i ndPo l i cy >(c l u s) ;

To allow binary searching the clusters in the FastContainer are sorted by
increasing channel number 3.

2.3 STCluster

Access to the full information within the cluster bank is provided by the
STCluster class. This class is used by the offline track fit and also for
monitoring. Internally, this class contains a STLiteCluster (and hence
provides the functionality described in the previous section) together with a
list of the ADC values for the strips that contributed to the cluster:

#include ”Event/STCluster . h”
using namespace LHCb;
STCluster∗ aCluste r ;

// t o t a l charge
const double charge = aCluster−>tota lCharge () ;

// vec tor o f ADC va lue s
const LHCb : : STCluster : : ADCVector& vec = aCluster−>s t r i pVa lu e s () ;

// adc va lue o f g iven s t r i p
unsigned int s t r i p ;

3This corresponds to sorting by increasing zyx [3].

5

const unsigned int adc = aCluster−>adcValue (s t r i p) ;

// maximum adc va lue in the c l u s t e r
const unsigned int maxADC = aCluster−>maxADCValue () ;

// channels t ha t con t r i bu t ed to the c l u s t e r
std : : vector<STChannelID> channe l s = aCluster−>channe l s () ;

// f i r s t and l a s t channel
STChannelID f i r s tChan = aCluster−>f i r s tChanne l () ;
STChannelID lastChan = aCluster−>l a s tChanne l () ;

This information is used to re-calculate the inter-strip fraction offline. A
method is also provided that gives access to neighbour sum information:

using namespace LHCb;
STCluster∗ aCluste r ;
double sum = aCluster−>neighbourSum () ;

Finally, the class provides access to the Tell1 board and online number the
cluster corresponded to:

LHCb : : STCluster∗ aCluste r ;
const unsigned int boardID = aCluster−>sourceID () ;
const unsigned int s t r i p = aCluster−>t e l l 1Channe l () ;

Objects of this type are stored in a KeyContainer with the STChannelID
as the key. This container provides sequential access via iterators together
with the possibility of ’keyed’ access:

using namespace LHCb;
// r e t r i e v e c l u s t e r s [GaudiAlgorithm syntax]
const STClusters ∗ c lu s t e rCont = get<STClusters >(STClusterLocat ion : : TTClusters) ;

// s e qu en t i a l access
STClusters : : c o n s t i t e r a t o r i t e rC l u s = clusterCont−>begin () ;
for (; i t e rC l u s != c lusterCont−>end () ; ++i t e rC l u s){

// do something
}

// keyed access
STChannelID chan ;
STCluster∗ c l u s = clusterCont−>ob j e c t (chan) ;
i f (chan != 0){

// c l u s t e r i s in the conta iner
}

To allow binary searching the clusters in the STClusters container are sorted
by increasing channel number.

6

2.4 STSummary

During the decoding step information on Tell1 boards that are missing or
have problems is collected. This information together with the PCN of the
event is stored in an STSummary class that is created and registered on the
store during the STCluster decoding. The code fragments below illustrate
the use of this class:

// Event
#include ”Event/STSummary . h”
using namespace LHCb;

// r e t r i e v e the event summary
const STSummary∗ summary = get<STSummary>(TSummaryLocation : : TTSummary) ;

// some banks are l o s t
const std : : vector<unsigned int>& l o s t = summary−>missingBanks () ;

// some banks were corrupted
const std : : vector<unsigned int>& corrupted = summary−>banksWithError () ;

// some banks can be recovered [map conta in ing source + f r a c t i on recovered]
const STSummary : : RecoveredInfo& recovered = summary−>recoveredBanks ()

// pcn
const double pcn = summary−>pcn () ;
bool sync = summary−>pcnSync () ;

3 Decoding Algorithms

The STLiteClusters and STClusters are created by decoding the Raw-
Banks. Two GaudiAlgorithms are provided for this purpose in the STDAQ
package: RawBankToSTLiteClusterAlg and RawBankToSTCluster-
Alg. Since the decoding of both classes shares common function they derive
from the STDecodingBaseAlg. The base class also provides functionality
to decode the Tell1 error banks. This allows the possibility of recovering
partially corrupted banks during the decoding procedure. A third algorithm
- STErrorDecoding derives from the base class. This algorithm ’forces’ the
error bank decoding by calling the appropriate methods of the base class.

The majority of the code in these algorithms is dedicated to converting the
online channel number to the offline representation and checking that the
integrity of the raw data. These tasks are discussed in detail in the next
sections.

7

GaudiAlgorithm

STDecodingBaseAlg

STErrorDecoding RawBankToSTLiteClusterAlg RawBankToSTClusterAlg

Figure 2: Class diagram for ST decoding algorithms.

3.1 Channel Mapping

The mapping between the online Tell1 channel numbering and offline scheme
[3] is performed by the ISTReadout interface. There is is one implementa-
tion of this tool for the Inner Tracker and one for the Trigger Tracker. A base
class expresses the common functionality between the two detectors (Fig. 3).
This class delegates much of the work to the STTell1Board class.

ISTReadoutTool

STReadoutTool

ITReadoutTool TTReadoutTool

Figure 3: Class diagram for the ST readout tools.

The following code fragments demonstrate how the tool is used in the decod-
ing:

#include ”Kernel / ISTReadoutTool . h”
#include ”Kernel /STTell1Board . h”
#include ”Kernel /STTell1ID . h”
#include ”Kernel /STChannelID . h”

using namespace LHCb;

// readout t o o l

8

ISTReadoutTool∗ readoutTool = too l<ISTReadoutTool>(”TTReadoutTool”) ;

// ge t the board
STTell1Board∗ aBoard = readoutTool−>findByBoardID (STTell1ID ((∗ i terBank)−>sourceID ())) ;

// check the channel i s v a l i d
unsigned int chan ;
i f (aBoard−>val idChannel (chan) == true){
// v a l i d − use i t
unsigned int vers ion , f r a c S t r i p ;
STTell1Board chanPair = aBoard−>DAQToOffline (f r a cS t r i p , ver s ion , chan) ;

}

The tool is also used in the encoding to convert the STChannelID to the
corresponding Tell1 board and online channel:

#include ”Kernel /STDAQDefinitions . h”

STChannelID chan ; double i s f ;
STDAQ: : chanPair aPair = m readoutTool−>offlineChanToDAQ (chan , i s f) ;
s td : : cout << ”board ” << ” channel ” << aPair . f i r s t << aPair . second std : : endl ;

3.2 Data Integrity Checks

The following checks are made of the data integrity are performed:

• The sourceID of the TELL1 board should be valid [3].

• The magic pattern in the header of the RawBank should be correct.

• The error bit in the header should not be set. If the bank is flagged as
having an error it is not decoded unless the recovery mode is activated.
In the latter case the corresponding error bank is decoded and all Beetle
ports that are not flagged as having an error are decoded 4.

• A majority vote of the PCNs of all boards that do not have errors is
performed. Any board that does not have the same PCN as the board
that wins the majority vote is discarded.

• The pseudo-size for each cluster written in the first half of the bank
should be consistent with the number of ADC values found in the
second half of the bank.

• The channel number of the cluster must correspond to a valid detector
channel.

4By default this mode is not activated.

9

• The number of bytes read during the decoding process should be con-
sistent with the value written in the bank header.

• If two clusters with the same channel number are found only the first
is kept. All these checks are currently performed by both decoding
algorithms 5.

The number of missing, corrupted and recovered banks is kept track of and
stored in the STSummary object. In addition, GaudiAlgorithm counters
are incremented and printed out at the end of the job to give a summary of
the decoding performance.

References

[1] O. Callot et al. Raw-data Format. EDMS-565851.

[2] G. Haefeli and A. Gong. ST zero suppressed bank data format. EDMS-
note 690583/3.

[3] M. Needham and O. Steinkamp. Updated channel numbering and readout
partitioning for the Silicon Tracker. LHCb-note 2007-137.

[4] G. Haefeli. VELO and ST error bank data format. EDMS-note
6948181/1.

[5] T. Szumlak and C. Parkes. Velo Event Model. LHCb-note 2006-054.

5In the future some of these checks could be dropped from the STLiteCluster decoding
in order to save some CPU time.

10

