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Abstract

The branching fraction measurement of B0
s → µ+µ− and B0→ µ+µ− is one of the key

analysis for the LHCb experiment. These branching fractions are predicted to be very
small in the Standard Model and are highly sensitive to effects beyond the Standard
Model. Therefore these decays can be used to detect indirectly New Physics.
LHCb has published this year a result based on 2010 data. No signal was observed and
an upper limit for the branching fractions has been set.
One of the corner stones in this analysis at LHCb is the determination of the invariant
mass distribution of the two muons for signal and background. The parameters of the
signal distribution must be estimated from decays similar to B0

(s) → µ+µ− such as

B0
(s)→ (π+/K+)(π−/K−) or ψ(nS)/ϒ (nS)→ µ+µ− as no signal for B0

(s)→ µ+µ−

has been observed. A special focus in the determination of the parameters lies in the
estimation of the systematic errors.
This thesis provides the determination of the invariant dimuon mass distribution and its
statistical and systematic errors based on the 2010 data with different methods which
have led to compatible results.
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Introduction

The Large Hadron Collider (LHC) and its experiments have been running since spring
2010 at a center of mass energy of

√
s = 7TeV. The goal of this particle accelerator

is, on one hand, the discovery of the last missing particle in the Standard Model (SM)
of particle physics, the Higgs boson responsible for the other particles’ masses. On
the other hand the experiments are looking for signs of New Physics (NP) beyond the
Standard Model. The LHCb experiment is searching for such phenomena in the sector
of Heavy Flavor particles, Hadrons containing charm and beauty quarks. Channels well-
suited for such searches are the rare decays B0

(s)→ µ+µ− where B0
(s) means the B0 or

the B0
s meson. Many New Physics models can be tested by measuring the branching

fractions of these decays. The present thesis provides methods to estimate the invariant
mass distribution of the B0

(s) mesons decaying into two muons which forms an important
input to this search.

Chapter 1 briefly describes the Standard Model of particle physics. Chapter 2 explains
the LHCb experiment and its detectors while Chapter 3 gives an overview on the impact
of the branching fractions of B0

(s)→ µ+µ− in the Standard Model and beyond. Chap-
ters 4 to 7 are devoted to the determination of the different parameters describing the
invariant mass distribution.
The thesis is closed by a summary describing all parameters of the invariant mass dis-
tribution and its statistical and systematic errors in Chapter 8.
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1 The Standard Model of Particle
Physics

The Standard Model (SM) of particle physics describes the elementary particles, the
smallest constituents of matter, and their interactions. The predictions derived from this
model are in good agreement with experimental results.

1.1 Particle Spectrum and Interactions

The elementary particles in the SM can be split into two groups: fermions (half-integral
spin) and bosons (integral spin). While the fermions, quarks and leptons, form the
composite particles, the bosons are the carriers of the fundamental forces (cf. Tab. 1.1
and 1.2).

While interactions involving a photon, gluon or Z0 boson do not change the flavor of the
participating quarks, interactions with W± do this. There are not only flavor changes
within the families (e.g. d →W−u), but also across families (e.g. b→W−u). The
amplitude of such an interaction i→W j is proportional to the corresponding element
Vi j of the CKM matrix.

|VCKM|=

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

=

0.974 0.225 0.003
0.225 0.973 0.041
0.009 0.040 0.999

 [25] (1.1)

Processes involving transitions across families are suppressed due to the dominance
of the diagonal matrix elements (Cabbibo suppression), most strongly those involving
quarks of the third family.

15



1 The Standard Model of Particle Physics

Table 1.1: Summary of fermions in the Standard Model
Quantity 1st family 2nd family 3rd family

Quarks
up (u) charm (c) top (t)

q 2/3 2/3 2/3
m = 2-3.5 MeV/c2 = 1.27 GeV/c2 = 172 GeV/c2

anti-particlea) ū c̄ t̄

down (d) strange (s) beauty (b)
q -1/3 -1/3 -1/
m = 4-5.5 MeV/c2 = 101 MeV/c2 = 4.67 GeV/c2

anti-particlea) d̄ s̄ b̄
Leptons

electron (e−) muon (µ−) tau (τ−)
q -1 -1 -1
m = 511 keV/c2 = 105 MeV/c2 = 1.78 GeV/c2

anti-particlea) e+ µ+ τ+

electron-neutrino (νe) muon-neutrino (νµ ) tau-neutrino (ντ )
q 0 0 0
m < 2 eV/c2 95% C.L. < 17 keV/c2 95%

C.L.
< 1.23 MeV/c2 95%
C.L.

anti-particlea) ν̄e ν̄µ ν̄τ

a) Anti-particles have beside opposite charge-like quantum numbers the same qualities
as the particles.

Table 1.2: Summary of interactions and bosons in the Standard Model
Interaction Electromagnetic Weak force Strong force
Gauge bosons photon (γ) W±, Z0 bosons gluons (g; 8 pieces)
mboson = 0 eV/c2 = 80.4 GeV/c2(W±)

= 91.2 GeV/c2(Z0)
= 0 eV/c2

qboson 0 ±1 (W±)
0 (Z0)

0

acting on all charged particles all left-handed fermi-
ons and W±, Z0

quarks and gluons

1) The Higgs boson postulated to explain the masses of all the other particles has spin
0 and interacts with all particles having masses.

16



1.2 B mesons and cc̄-/bb̄-mesons

1.2 B mesons and cc̄-/bb̄-mesons

The composite particles which are studied in this thesis are pseudoscalar (i.e. spin
J = 0, but odd parity) B mesons as well as cc̄- and bb̄-mesons, also called Charmonia
and Bottomia. These particles are listed in Tab. 1.3 with their relevant properties.

Table 1.3: Summary of B mesons as well as Charmonia and Bottomia states [25]
Particle Quark state Mass m [MeV/c2] lifetime τ [ps] a)

B mesons

B0/B0 |b̄d〉/|bd̄〉 5279.5 1.52
B+/B− |b̄u〉/|bū〉 5279.2 1.64

B0
s /B0

s |b̄s〉/|bs̄〉 5366.3 1.47
B+

c /B−c |b̄c〉/|bc̄〉 6277.0 0.45
cc̄-mesons
J/ψ(1S) |cc̄〉 3096.9 7.1·10-9

ψ(2S) |cc̄〉 3686.0 2.1·10-9

bb̄-mesons
ϒ (1S) |bb̄〉 9460.3 1.2·10-8

ϒ (2S) |bb̄〉 10023.3 2.1·10-8

ϒ (3S) |bb̄〉 10355.2 3.2·10-8

a) The lifetimes of the cc̄- and bb̄-mesons are taken as τ = h̄/Γ from the measured
decay width.

The cc̄- and bb̄-mesons decay mainly in processes involving the strong or electromag-
netic interaction, leading to small lifetimes. There are several of these mesons which
differ in mass due to different radial excitations, quark spin and angular momentum
configurations. J/ψ(1S) and ψ(2S) as well as ϒ (1S), ϒ (2S) and ϒ (3S) are all mesons
with a total spin J = 1 and differ in the radial excitation.

The B mesons on the other hand offer due to their large masses, and as they only can de-
cay through the weak force, many decay channels, which are good candidates to search
for signs of physics beyond the Standard Model.
As the b quark can not decay within its family, B mesons have to decay Cabbibo sup-
pressed leading to relatively long lifetimes of about 10−12 s which can be in the ex-
periment taken as advantage to identify these mesons through their displaced decay
vertices.
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2 The LHCb experiment

2.1 The LHCb detector

The LHCb experiment is one of the four large experiments at the LHC1. Its main goals
are the studies of CP violating processes in B physics as well as rare decays of B
hadrons.

The LHCb detector is designed as a single-arm forward spectrometer with an acceptance
in terms of pseudorapidity2 of η = 1.9− 5.3. The layout of the detector takes into
account the enhanced production of b quarks under low angles with respect to the beam
at Hadron colliders. The detector set-up is shown in Fig. 2.1.

Tracking System The apparatus includes a tracking system formed by the Vertex Lo-
cator (VELO), the Tracker Turicensis (TT) – both built as micro-strip silicon detectors
and located upstream of the dipole magnet – as well as the tracking stations (T1, T2, T3)
downstream of the magnet. The latter are formed by the Inner Tracker (IT) around the
beam pipe, which is also a micro-strip silicon detector, and by the Outer Tracker (OT)
in the region farther away from the beam, which is based on straw tubes. The achieved
relative momentum resolution is σp/p = 0.3% for p = 1 GeV/c and σp/p = 0.45% for
p = 100 GeV/c [19].

Hadronic Particle Identification There are two Ring Imaging Cherenkov Detec-
tors (RICH) for particle identification, one for low momentum particles (2-60 GeV/c),
located upstream of the magnet and running with Aerogel and C4F10 as radiators and
one for high momentum particles (16-100 GeV/c) located downstream of the magnet
and using CF4 [23].

1The others are CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC ApparatuS), both
designed as multipurpose experiments and dedicated to Heavy Flavor physics as well as Higgs and New
Physics searches, and ALICE (A Large Ion Collider Experiment), designed for heavy ion collisions and
investigating e.g. quark-gluon plasma.

2The pseudorapidity is defined as η =− log(tan(θ /2)) with θ as the angle between the momentum
of the particle and the beam line, measured in the lab frame.
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Figure 2.1: Side view of LHCb (VELO: VErtex LOcator, RICH: Ring Imaging CHerenkov detector, TT: Tracker Turicensis, T1/2/3: Tracking
stations, SPD/PS: Scintillating Pad Detector/PreShower, ECAL: Electromagnetic CALorimeter, HCAL: Hadronic CALorimeter, M1-5: Muon de-
tectors) [19]
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2.1 The LHCb detector

Calorimetry LHCb includes an Electromagnetic Calorimeter (ECAL) and a Hadronic
Calorimeter (HCAL). The former is a sampling lead-scintillator device while the latter
is made as a sampling detector consisting of iron as absorber and scintillating tiles as
active part. In front of the ECAL there are a Scintillating Pad Detector (SPD) and a
Preshower (PS) used to reject background of soft neutral and charged pions from the
underlying event.

Muon system The muon detectors (M1 - M5) are based on MWPC (Multiwire pro-
portional chambers) and use in addition triple-GEM (Gaseous Electron Multiplier) in
the area around the beam pipe to achieve a higher granularity and to take the faster
aging of the detector in this region into account.

The calorimeters and the muon system are mainly dedicated to offline particle identifi-
cation and trigger tasks [8].

Trigger and data selection The LHCb trigger system is built up by three levels:
The lowest level (L0-trigger) is implemented in hard ware and selects events with large
transverse momenta in the muon system or large transverse energy in the calorimeters.
This level reduces the event rate from the 40 MHz collision rate of LHC to about 1 MHz.
The second level (HLT1-trigger) performs a partial reconstruction of the events and re-
duces based on lifetime and impact parameter information the rate by an additional
factor of about 30.
Finally the third level (HLT2-trigger) uses the information of the fully reconstructed
events to reduce the rate to 2 kHz. The events passing the HLT2-trigger are then writ-
ten to tape and classified according to their topology in different so-called streams (e.g.
events including hard photons, two muons, b hadrons, etc.) and even finer in strip-
ping lines. A stripping line corresponds to a coarse selection of events which will be
used in a certain analysis (e.g. events most probable including a decay J/ψ(1S)→
µ+µ−).

21



2 The LHCb experiment

2.2 The 2010 Data Taking

The LHCb experiment has collected about 37pb−1 of integrated luminosity in the 2010
run (cf. Fig. 2.2). Using this data, the bb̄-cross section at

√
s = 7TeV in the accep-

tance of the detector has been measured to be σ(pp→ bb̄X) = (75.3± 5.4(stat.)±
13.0(syst.))µb. Extrapolating to the full phase space, a total cross section of σ(pp→
bb̄X) = (284±20(stat.)±49(syst.))µb is obtained [3].

Days since 2010-01-01
100 150 200 250 300

]
-1

L
 [

p
b

5

10

15

20

25

30

35

40 -1Delivered Luminosity 42.1 pb

-1Recorded Luminosity 37.6 pb

Integrated luminosity in 2010

Figure 2.2: Delivered and collected integrated luminosity in 2010 for LHCb as a function of time.
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3 Theory of B0
(s)→ µ+ µ− and

Analysis Strategy for LHCb

3.1 Relevance of B0
(s)→ µ+ µ−

3.1.1 B0
(s)→ µ+ µ− in the Standard Model

In the Standard Model the decay B0
(s) → µ+ µ− is only allowed by Flavor-changing

Neutral Currents (FCNC). As shown in the Feynman diagrams (cf. Fig. 3.1 and 3.2) the
decay is heavily Cabbibo suppressed. It is further suppressed by helicity. The branching
fractions predicted in the Standard Model are:

B(B0
s → µ

+
µ
−) = (3.2±0.2) ·10−9 [14]

B(B0→ µ
+

µ
−) = (1.0±0.1) ·10−10 [14]

Figure 3.1: A Penguin diagram of B0
s →

µ+ µ− in the Standard Model. The diagram is
heavily Cabibbo suppressed due to the involved
non-diagonal CKM-matrix elements at vertices
involving the W boson.

Figure 3.2: A Box diagram of B0
s → µ+ µ− in

the Standard Model. As in the left diagram the
diagram is Cabibbo suppressed.
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With this low SM branching fractions, the decays are very sensitive to New Physics
(NP) as their contributions to the decays might be of the same order of magnitude as the
SM contribution.

The decays have so far not been observed. The lowest upper bounds for the branching
fractions have been set by the two Tevatron experiments CDF and DØ1:

B(B0
s → µ

+
µ
−) < 4.3 ·10−8 at 95% C.L. (CDF) [4]

B(B0
s → µ

+
µ
−) < 5.1 ·10−8 at 95% C.L. (DØ) [6]

B(B0→ µ
+

µ
−) < 7.6 ·10−9 at 95% C.L. (CDF) [4]

3.1.2 B0
(s)→ µ+ µ− in New Physics Models

In many NP models a significant enhancement of the branching fractions for the decays
is possible. In the following we briefly discuss a few of these models:

Two Higgs Doublets Model So far the particles predicted by the Higgs mechanism,
i.e. the Higgs bosons, have not been found. In principle different actual implementa-
tions of the mechanism are possible, which can differ in the number of involved Higgs
bosons. Besides the simplest possibility in the SM, a single doublet of complex Higgs
fields, there are possibilities – within but also beyond the SM, e.g. the Minimal Super-
symmetric Standard Model (MSSM) – involving two doublets of complex Higgs fields.
These two doublets would lead to a spectrum of five Higgs bosons: two charged, two
neutral scalar (CP-even) and one neutral pseudo-scalar (CP-odd). As shown in Fig.

1Since the EPS 2011 conference (July 2011, Grenoble) there are now lowest upper bounds on the
branching frations:

B(B0
s → µ

+
µ
−) < 1.5 ·10−8 at 95% C.L. (LHCb) [1]

B(B0
s → µ

+
µ
−) < 1.9 ·10−8 at 95% C.L. (CMS) [16]

B(B0→ µ
+

µ
−) < 5.2 ·10−9 at 95% C.L. (LHCb) [1]

B(B0→ µ
+

µ
−) < 4.6 ·10−9 at 95% C.L. (CMS) [16]

In addition there is a first branching fraction measurement by CDF of B(B0
s → µ+ µ−) = (1.8+1.1

−0.9) ·
10−8 at 95% C.L. which could not be confirmed by LHCb or CMS. The 95% confidence limit on B(B0→
µ+ µ−) by CDF is 6.0 ·10−9[4].
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3.3 those particles could contribute to the decay B0
(s)→ µ+µ− and lead to a branching

fraction proportional to fundamental parameters of the model

B(B0
(s)→ µ

+
µ
−) ∝ tan4

β ·

(
logm
m−1

)2

, with m =
m2

H±

m2
t

, (3.1)

where mH± is the mass of the charged Higgs bosons and tanβ the ratio of the vacuum
expectation values (VEV) of the two Higgs doublets [10, 13].

Figure 3.3: Feynman diagram for B0
s → µ+ µ−

in the Two Higgs Doublets Model. The dia-
gram involves a charged Higgs boson as well
as a neutral CP-even (H0,h0) or CP-odd (A0)
Higgs boson.

Figure 3.4: Feynman diagram for B0
s →

µ+ µ− in the Minimal Supersymmetric Stan-
dard Model. The diagram involves a chargino
(χ̃±) as well as an anti-stop-quark ¯̃t as su-
persymmetric particles and a neutral CP-even
(H0,h0) or CP-odd (A0) Higgs boson.

Z′ Models A large number of models (e.g. Grand Unified Theories, theories involv-
ing extra dimensions, Supersymmetric String Theory) predict the existence of a vec-
tor boson heavier than the Z0, called Z′. Such a boson could contribute to the decay
B0

(s)→ µ+ µ− as replacement of γ∗/Z0 in the SM diagrams (cf. Fig. 3.1) and lead to

an enhanced branching fraction of B =O(10−8) [24].

Minimal Supersymmetric Standard Models The enhancement of the particle spec-
trum in supersymmetric models, i.e. the postulation of bosonic (fermionic) supersym-
metric partners to all fermions (bosons) in the Standard Model, gives rise to many addi-
tional contributions to B0

(s)→ µ+ µ− (cf. Fig. 3.4).
The predicted branching fraction depends on the actual configuration of the model,
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e.g. R-parity2 violating MSSM, maximally CP-violating MSSM, etc. For example the
MSSM with Non-Universal Higgs Masses (NUHM) – the masses of the two CP-even
Higgs bosons can be different – predicts a branching fraction of

B(B0
(s)→ µ

+
µ
−) ∝

tan6 β

M4
A0

, (3.2)

where MA0 is the mass of the pseudo-scalar Higgs boson [10].

Besides the decays also test other theories such as Technicolor and Minimal Supergrav-
ity (mSUGRA) [12].
A precise measurement of their branching fractions allows to check the validity of a
wide range of models, to restrict their allowed parameter spaces and thereby to indi-
rectly search for signs of New Physics.

3.2 Analyisis Strategy for LHCb

The measurement of the branching fractions of B0
(s)→ µ+ µ− at LHCb can be summa-

rized by the following analysis steps:

1. The data set is reduced to a manageable size by applying loose selection cuts. The
signal region (B0

(s)±60MeV/c2) is blinded.

2. A topological multi-variate classifier, the Geometrical Likelihood (GL)3, is used
to separate signal and background (mostly from bb̄→ µ+µ−X) events. Every
event has a GL value between 0 and 1 indicating how likely an event is a signal
(1) or a background (0) event. In addition the invariant mass of the two muons is
used to discriminate signal and background. Signal events have an invariant mass
of the muons close to the mass of B0

(s) according to the expected invariant mass

distribution for B0
(s)→ µ+ µ−.

2R-parity is a proposed concept in Supersymmetry of a multiplicative conserved number R where
every SM particle has an R-value of R = 1 while the Supersymmetric particles have R = −1. Therefore
the lightest supersymmetric particle (LSP) could not decay into n SM particles (RLSP = −1 6= 1 = Rn

SM)
and would be as a stable particle a candidate for dark matter.

3The GL is built from kinematical and topological variables (distance of closest approach between
the two muons, isolation of the muons and χ2 of the impact parameter of the muons with respect to the
primary vertex; transverse momentum, lifetime and impact parameter of the B meson) of a two-body
decay. For signal events the spectrum should be flat between 0 and 1, while it is strongly peaking at 0 for
background events. More details in Ref. [2].
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3. The number of signal-like events for a given value of B(B0
(s) → µ+ µ−) is ex-

tracted from the observed number of detected signal events in channels with a sim-
ilar characteristic (B+→ J/ψ(µ+µ−)K+, B0→ K+π− and B0

s → J/ψ(µ+µ−)
φ (K+K−)) and with well-known branching fractions.

4. The upper limit on B(B0
(s)→ µ+ µ−) is then extracted by comparing the number

of detected events within a certain range of the GL and the invariant dimuon
mass with the expected number of events in this range under the background
only hypothesis and under the hypothesis of background and signal with a certain
B(B0

(s)→ µ+ µ−). This method is called binned CLs-method [27, 21].

The signal invariant dimuon mass distribution used to separate signal and background
events as explained under point 2 is described by a Crystal Ball function [18]:

f (x;n,α , µ ,σ) = N ·

exp
(
− (x−µ)2

2σ2

)
, if x−µ

σ
>−α ,(

n
|α|

)n
· exp

(
− |α|

2

2

)
·
(

n
|α| −|α|−

x−µ

σ

)−n
, if x−µ

σ
≤−α ,

(3.3)

where µ is the mean and σ the width of the Gaussian, while n is the exponent of the
exponential tail and α the transition point at which the function changes from the expo-
nential to the Gaussian regime. N is the normalization factor of the PDF.

The following chapters describe the estimation of these four parameters: µ (Chapter 4),
σ (Chapters 5 and 6), n and α (Chapter 7).
As there is obviously no possibility to extract these parameters from the signal channel
itself, they must be either estimated from Monte Carlo simulation or from decays similar
in topology with same initial or final states. These decays are for example B0→ K+π−

or ϒ (1S)→ µ+µ−. The latter approach has the advantage of relying as little as possible
on Monte Carlo simulations. Chapter 8 finally combines the parameters to build the
signal PDF.
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The first parameter of the Crystal Ball function (cf. (3.3)) to be considered is the mean
of the Gaussian µ . We can not simply use the nominal values of mB0 and mB0

s
as there

might be a systematic bias in the reconstructed invariant mass, for example due to a not
perfectly described dipole magnet field. Therefore other two-body decay modes of B0

and B0
s are used for the determination.

4.1 Data Sample and Analysis Strategy

4.1.1 Data Sample and Selection

An inclusive B0
(s) → h+h− sample1 is used, where h± can be a charged kaon or pion

which are separated from each other using the particle identification from the RICH.
The masses of B0 and B0

s are extracted from fits to the invariant mass distribution of the
two final state particles.

The used data is the full data set of 37pb−1 in 2010 which forms also the base for all
the following analyses. The following cuts are applied for the B0

(s)→ h+h− sample to
reduce background:

• For the final state particles h± we demand a good track fit of χ2
track/ndf < 5 and

a clear separation from the primary vertex by χ2
IP > 25, where IP is the impact

parameter of the track to the primary vertex and χ2
IP is the square of the impact

parameter divided by its error.

• For the B0
(s) we want to have a small distance of closest approach (DOCA) of

the two associated tracks (DOCA < 0.3mm), a good fit of the decay vertex by
χ2

SV < 9, a good pointing of the reconstructed B0
(s) momentum to the primary

vertex by χ2
IP < 25 and a clear separation of the primary and secondary vertex by

VDS > 15, where VDS is the vertices distance significance (i.e. distance between

1If not explicit indicated, the charge conjugated decays are always meant to be included.
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the two vertices divided by the error on their positions). Furthermore we impose
a mass window of ±600 MeV/c2 around the nominal mass of B0

s .

On top of this selection, we enhance the signal fraction by demanding GL > 0.1.

4.1.2 Strategy and Fit Models

The basic strategy is to separate the different B0
(s)→ h+h− decay modes B0

(s)→ π+π−,

B0
(s)→K+π−, B0

(s)→ π+K− and B0
(s)→K+K− by applying cuts on the particle identi-

fication (PID) of the reconstructed particles. This allows us to select the correct hypoth-
esis of the final state particles (kaon or pion) and therefore assign their correct masses
which are then used in the reconstruction of the invariant mass of the B meson.
The significance of a particle hypothesis, i.e. that a particle is of type i and not of type
j, is represented by the DLLi− j (delta log-likelihood) value. The larger this value is
the more likely the particle is of type i than of type j. A value of zero means equal
probabilities to be of type i or j (cf. Chapter 6).
We demand a DLLK−π value greater than 10 to identify a particle as a kaon and smaller
than −10 to identify it as a pion. This gives samples with a purity above 98% and an
overall efficiency of about 73%, so no bias in the reconstructed invariant mass due to
misidentified particles has to be expected [26].
In addition there is the chance of misidentifying the proton from the decay modes
Λ0

b → pπ−/K− as a kaon or a pion leading to a contamination of the B0
(s) → h+h−

decay modes. To avoid this, we demand in addition a DLLK−p and DLLπ−p value
greater than zero.

Table 4.1: Branching fractions of B0
(s)→ h+h− [25]

hh B(B0→ h+h−) B(B0
s → h+h−)

π+π− =(5.13±0.24)·10-6 <1.2·10-6 @ 90% C.L.

π+K− – a) =(4.9±1.0)·10-6

K+π− =(1.94±0.06)·10-5 – a)

K+K− <4.1·10-7 @ 90% C.L. =(3.3±0.9)·10-5

a)No value or upper limit has yet been measured.

The branching fractions for the different decay modes are listed in Tab. 4.1. In the
π+π− final state, we expect a signal only from B0 decays, while in the K+K− final state
we expect a signal only from B0

s decays.
In the K+π− (π+K−) mode we expect a dominating signal from B0 (B0) and a smaler
one from B0

s (B0
s ).

Therefore we use for the π+π− and K+K− distributions a double Crystal Ball function
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Figure 4.1: Leading order Feynman diagram of B0 → K+π− (l.), leading order Feynman diagram of
B0 → π+K− surpressd by a factor α2

W due to the additional W boson (m.) and leading order Feynman
diagram of B0

s → K+π− (r.)

(4.1) to describe the invariant mass distribution for signal, while for K+π− and π+K−

we use two double Crystal Ball functions

f (m;n,α , µ ,σ) = N ·



(
nl
|αl |

)nl
· exp

(
− |αl |2

2

)
·
(

nl
|αl | −|αl|− m−µ

σ

)−nl
, if x−µ

σ
≤−αl ,(

nr
|αr|

)nr
· exp

(
− |αr|2

2

)
·
(

nr
|αr| −|αr|− m−µ

σ

)−nr
, if x−µ

σ
≥ αr,

exp
(
− (m−µ)2

2σ2

)
, else,

(4.1)

where N is the normalization factor, nl,r are the exponent of the left and right tails, αl,r
the turning points of the left and right tails respectively.

The left hand tail of the double Crystal Ball function takes final state radiation (FSR)
and interaction with matter into account while the right hand tail describes non-gaussian
detector effects. A relinquishment of the right hand tail (i.e. the use of a single Crystal
Ball) could result in a bias of the mean as well as of the sigma of the Gaussian.
Contaminations from Λ0

b → pπ−/K− are neglected due to the small branching ratios
(B(Λ0

b → pπ−) = (3.8± 1.3) · 10−6, B(Λ0
b → pK−) = (6.0± 1.9) · 10−6), the small

b hadronization fraction into Λ0
b (less than 8.5%) [25] and the fact that most of these

events are eliminated by the applied PID cuts.
The invariant mass distribution of the combinatorial background is described by an ex-
ponential distribution. In addition there is a physical background contribution from
B→ hhh decays where one track is not correctly reconstructed and therefore fakes a
two-body decay. Due to the missing track in the reconstruction of the invariant mass of
the B meson, this background appear at masses below the B meson masses. To describe

31



4 B0 and B0
s Masses

this background, we use as distribution the phenomenological function [15]:

f (m;m0,cp,σp) =N ·m
(

1− m2

m2
0

)
Θ(m0−m)exp(−cp ·m)⊗ 1√

2πσp
exp
(
− m2

2σ2
p

)
,

(4.2)

where N is the normalization factor and Θ the Heaviside thetafunction. The convolution
acts on m.

4.2 Analysis and Results

4.2.1 Monte Carlo for B0
s → µ+µ−

In a first step we use an exclusive B0
s→ µ+µ−Monte Carlo sample2 to extract the values

of the parameters nl , αl , nr and αr of the double Crystal Ball function. In the fit of the
invariant mass distribution of the B0

(s)→ h+h− from data we fix these parameters to the
values extracted from the Monte Carlo sample as there are strong correlations among
them and between them and the exponential parameter describing the combinatorial
background.
Fig. 4.2 shows the reconstructed invariant mass distribution for the B0

s → µ+µ− Monte
Carlo sample together with the fitted double Crystal Ball and Tab. 4.2 displays the
values of the parameters extracted from the Maximum Likelihood fit.

Table 4.2: Fit parameters of B0
s → µ+µ− Monte Carlo

Parameter Value

αl 1.56±0.04

αr -1.40±0.07

nl 1.43±0.08

nr 9.80±2.00

µ 5366.95±0.17 MeV/c2

σ 18.75±0.15 MeV/c2

2All Monte Carlo samples used in this thesis were generated using the LHCb application GAUSS
v39r0 based on LHCb v26r3, Pythia 6 418.2, PHOTOS 215.2, LHAPDF 5.3.1, HepMC 1.26 and
GEANT4 v91r3.p03. The reconstruction used the LHCb applications BOOLE v21r9 and BRUNEL
v37r8p5.
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Figure 4.2: Invariant mass distribution of B0
s → µ+µ− Monte Carlo fitted with a double Crystal Ball

function

4.2.2 Invariant Mass Distribution for B0
(s)→ hh

Fig. 4.3 to 4.6 show the invariant mass distributions for the different B0
(s)→ h+h− decay

modes together with the fit models described in Sec. 4.1.23. The extracted values of the
fit are displayed in Tab. 4.3.

Table 4.3: Values of mB0 , mB0
s

and fB0 from the invariant mass fit of the B0
(s)→ h+h− decay modes

Decay mode mB0 mB0
s

fB0

B0
(s)→ π+π− 5276.0±2.5 MeV/c2 – a) – a)

B0
(s)→ π+K− 5275.1±1.3 MeV/c2 5363 ±6 MeV/c2 b) 0.900±0.019

B0
(s)→ K+π− 5276.5±1.5 MeV/c2 5364 ±9 MeV/c2 b) 0.955±0.024

B0
(s)→ K+K− – a) 5362.2±1.6 MeV/c2 –a)

a)No value extracted.
b)Value will not further be considered.

For the π+K− and K+π− channels, fB0 is the fraction of the total number of signal

3The reconstruction of the all events in this thesis has been done with BRUNEL v37r8p4 with the
Condition Database head-20101026 and the Detector Database head-20101026. The reconstructed data
was then analyzed with the LHCb application DAVINCI v26r3p2.
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Figure 4.3: Invariant mass distribution for π+π− from data. The blue solid (–) line is the full fit model
while the blue dashed (- -) line shows the combinatorial background, the black solid line the physical
background and the red solid line the B0/B0→ π+π− signal.
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Figure 4.4: Invariant mass distribution for K+π− from data. The blue solid (–) line is the full fit model
while the blue dashed (- -) line shows the combinatorial background, the black solid line the physical
background, the red solid line the B0→ K+π− signal and the red dashed line the B0

s → K+π− signal.
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Figure 4.5: Invariant mass distribution for π+K− from data. The blue solid (–) line is the full fit model
while the blue dashed (- -) line shows the combinatorial background, the black solid line the physical
background, the red solid line the B0→ π+K− signal and the red dashed line the B0

s → π+K− signal.
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Figure 4.6: Invariant mass distribution for K+K− from data. The blue solid (–) line is the full fit model
while the blue dashed (- -) line shows the combinatorial background, the black solid line the physical
background and the red solid line the B0

s /B0
s → K+K− signal.
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events associated to B0/B0. The theoretical calculation of this value for B0
(s)→ π+K−

is shown in (4.3) while (4.4) shows the same value for B0
(s)→ K+π−.

fB0 =
(1−α) ·B(B0→ π+K−)

(1−α) ·B(B0→ π+K−)+ fs
fd
·0.5 ·B(B0

s → π+K−)
(4.3)

fB0 =
α ·B(B0→ K+π−)

α ·B(B0→ K+π−)+ fs
fd
·0.5 ·B(B0

s → K+π−)
(4.4)

Here, fd/ fs is the ratio of the hadronization fractions of a b quark to form a B0 meson
or a B0

s meson respectively. The current world average for this ratio is 3.71±0.41 [11].
Furthermore, α is the relative fraction of B0 mesons to the total number of produced
B0 and B0 mesons. It has the theoretical value of 0.6 at the LHC center of mass energy
of
√

s = 7TeV [9]. This production asymmetry bases on the flavor asymmetry of pp
colliders as there are only d and u valence quarks in the remnants of diffracted protons
and not d and u valence quarks. Therefore it is more likely for a b quark to hadronize
into a meson than for a b quark which has an enhanced probability to form with the
remnants a baryon. While in case of B0

s /B0
s mesons the situation should be symmetric

(prefactor 0.5). The theoretical calculation leads to:

B0
(s)→ π+K−: fB0 = 0.922±0.020

B0
(s)→ K+π−: fB0 = 0.946±0.010,

where we used the branching fractions shown in Tab. 4.1. These values are in good
agreement with the measured values displayed in Tab. 4.3, but we have not considered
any error on α as well as any CP violation effect.

4.2.3 Systematics

The following sources of systematics have been taken into account for the determination
of µ , respectively mB0

(s)
:

1. Cut on the GL value: The systematics due to the imposed cut on the GL value
has been estimated by changing this cut value to GL = {0.05,0.15}.

2. Cut on the different DLL values: The same procedure has been done for the
DLL values, changing DLLK−π to {8,12} and DLLK/π−p to {−2,2}.

3. Value of fB0: To estimate effects due to the value of fB0 we fixed fB0 to the calcu-
lated theoretical value. As the theoretical and extracted values are in agreement,
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the effect on mB0
(s)

has been below 0.1 MeV/c2.

4. Fit model: The effect induced by the described Crystal Ball fit model has been
estimated by changing to a Gaussian for the signal peaks. The effect on µ is
a maximal shift of 0.2 MeV/c2 and can therefore be neglected compared to the
effects of the systematics due to the GL and DLL cuts.

These systematics as well as the values and the statistical errors are listed in Tab. 4.4.
The combined systematical error is the square root of the quadratic sum of the single
values as the correlations between the individual systematics are neglectable.

Table 4.4: Extracted values for µ , statistical errors and systematic errors
(B0→ π+π−) (B0→ π+K−) (B0→ K+π−) (B0

s → K+K−)

all values in MeV/c2

µ 5276.0 5275.1 5276.5 5362.2

stat. 2.5 1.3 1.5 1.6

syst.

GL 2.0 1.0 1.8 1.0

DLLK−π 0.8 0.5 0.2 1.9

DLLK/π−p 0.1 0.2 0.4 1.1

combined 2.2 1.1 1.9 2.4

4.2.4 Results

In case of mB0 we combine the three results by taking the weighted average using
1/(σ2

stat. +σ2
syst.) as weighting factors. The combined statistical error is defined by

σstat., comb. =

√
1

∑1/σ2
stat.

. (4.5)

The combined systematical error is defined as the weighted average of the individual
systematical errors using also 1/(σ2

stat. + σ2
syst.) as weighting factors because the sys-

tematics of the different decay modes are correlated.

We obtain the following values for the parameter µ of the invariant mass distribution
for B0

(s)→ µ+µ−

B0→ µ
+

µ
− : µ = 5275.6±0.9 (stat.) ±1.5 (syst.) MeV/c2 (4.6)

B0
s → µ

+
µ
− : µ = 5362.2±1.6 (stat.) ±2.4 (syst.) MeV/c2 (4.7)
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5 Invariant Mass Resolution from
Interpolation of Charmonium and
Bottomium Resonances

The first method discussed in this thesis to estimate the resolution σ of (3.3) uses a
linear interpolation between the measured resolutions for Charmonium and Bottomium
resonances decaying into two muons. The basic idea behind this approach is that the
invariant mass resolution as a function of the invariant mass can be predicted by using
the Gluckstern Formula and relativistic kinematics. In Sec. 5.1 and 5.2 we are deriving
this dependence from the Gluckstern Formula and making a cross-check with Drell-
Yan1 Monte Carlo.

5.1 The Gluckstern Formula

The Gluckstern Formula is a description of the relative measurement error on the mo-
mentum σp/p for a charged particle measured by the bending of its trajectory in a
homogeneous magnetic field [20, 22]. The formula predicts that σp/p consists of a
term linear in p, one proportional to 1/p and a constant term:

σp

p
=

√
(A · p)2 +

(
B · 1

p

)2
+C2 (5.1)

The linear term represents the error due to the finite resolution of the tracking detectors,
the second term the error due to multiple scattering and the constant term the error on
the angle of the track with respect to the magnetic field lines.
But the Gluckstern Formula is based on many assumptions and simplifications that are
only partially valid in real experiments: The magnetic field strength is assumed to be
constant and the track measurements should be equidistant as well as their number

1Drell-Yan names the process pp→ l+l− where l± is a charged lepton. In this thesis we are only
looking at Drell-Yan processes with muons in the final state.
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

should be independent of the momentum. The numbers of average track hits in the
different tracking detectors of LHCb as a function of the track momentum are displayed
in Fig. 5.1 to show that the assumptions for the Gluckstern Formula are only partially
valid.
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Figure 5.1: Average number of track hits in the different trackings detectors of LHCb as a function of the
track momentum: Vertex Locator (t.l.), Tracker Turicensis (t.r.), Inner Tracker (b.l.) and Outer Tracker
(b.r.) based on muons from Drell-Yan production. The vertical axes are zero-suppressed.

We check the validity of the Gluckstern Formula for muons by looking at Drell-Yan
Monte Carlo samples with invariant dimuon masses between 2 and 22 GeV/c2.
Fig. 5.2 shows the relative error on the momentum of the muons as a function of the
momentum. The relative error is taken as the standard deviation of the distribution of
the differences between the reconstructed and the true momentum divided by the true
momentum. The figure shows that the data does not follow a linear behaviour in the
region of highest momenta (i.e. above 100 GeV/c), but rather a power law. This devia-
tion from the Gluckstern formula is a reflexion of the above mentioned assumptions and
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5.1 The Gluckstern Formula

simplifications. We quantify it by replacing the linear term in (5.1) by A · pγ

σp

p
=

√
(A · pγ)2 +

(
B · 1

p

)2
+C2 (5.2)

leading to γ = 0.64±0.05.

) [MeV/c]µp(
310 410 510

)µ
/p

(
)µ

p
(

σ

0.005

0.01

0.015

0.02

0.025

0.03

Figure 5.2: Relative momentum error of muons from Drell-Yan Monte Carlo as a function of their
momentum. The black solid (–) line shows the fit with the standard Gluckstern formula (Eq. 5.1) while
the blue dashed (- -) line shows the fit with the modified Gluckstern formula Eq. (5.2).
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

5.2 The Invariant Mass Resolution as a Function of
the Invariant Dimuon Mass

5.2.1 Derivation from First Principles and the Gluckstern
Formula

We use first principles of relativistic kinematics to estimate the shape of the invariant
mass resolution. We start from the invariant dimuon mass mµµ :

m2
µµ = 2 · pν

µ+ pρ

µ−gνρ + 2 ·m2
µ

= 2 ·
(√

~pµ+
2 + m2

µ ·
√

~pµ−
2 + m2

µ − ~pµ+ · ~pµ−

)
+ 2 ·m2

µ (5.3)

As |~pµ | � mµ and mµµ � mµ we can simplify (5.3) to

m2
µµ = 2 · pµ+ · pµ− · (1− cosθ ), (5.4)

with pi = |~pi| and θ as the angle between the two muons.
The error on the invariant mass will depend on the measurement errors of the two track
momenta and the opening angle θ . We can neglect in first approximation the error on θ

as it propagates with sinθ and as min(cosθ )≈ 0.83 due to the acceptance of the detector
and the large Lorentz boost. Therefore we obtain for the invariant mass resolution σmµµ

by error propagation

σmµµ
=

1
2
·

σm2
µµ

mµµ

≈
mµµ

2
·

√√√√(σp
µ+

pµ+

)2

+

(
σp

µ−

pµ−

)2

(5.5)

If the magnitude of the two momenta is similar (i.e. pµ+ ≈ pµ+ ≈ pµ ) we can state
that mµµ ∝ pµ . Inserting Eq. (5.2) and neglecting the constant term and the multiple
scattering term – they are only relevant for low momenta – we obtain

σmµµ
= A′ ·m1+γ

µµ , (5.6)
(5.7)

with γ = 1 for the classical Gluckstern Formula and γ = 0.64 for the shape extracted in
Sec. 5.1.
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5.2 The Invariant Mass Resolution as a Function of the Invariant Dimuon Mass

5.2.2 The Invariant Mass Resolution in Drell-Yan Monte
Carlo

We check the validity of this derivation by looking again at a Drell-Yan Monte Carlo
sample described in Sec. 5.1. Fig. 5.3 shows the invariant mass resolution as a function
of the invariant mass. For each value of the invariant mass σmµµ

is extracted as the
standard deviation of the distribution of differences between the reconstructed invariant
mass and the true dimuon mass.
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Figure 5.3: Invariant mass resolution from Drell-Yan Monte Carlo as a function of the invariant dimuon
mass. The black lines show a linear fit to the full range (dashed, - -) and to the restricted range mµµ ∈
[3,11]GeV/c2 of the charmonia and bottomia dimuon resonances (solid, –). The blue lines show a fit of
a power law of the form (5.8) to the full range (dashed) and to the restricted range mµµ ∈ [3,11]GeV/c2

(solid).

There is a strong correlation between the invariant mass of the muon pair and the mo-
mentum spectrum of the parent particle (i.e. the virtual photon in case of Drell-Yan pro-
duction): A larger invariant mass shifts the spectrum to higher values. To remove this
bias in the determination of B0

(s)→ µ+µ− invariant mass resolution, we split the con-

sidered mµµ ∈ [2,22]GeV/c2 into bins of 0.5GeV/c2 and assign to every event within
a given bin a weight such that the momentum spectra of parent particles in each bin
correspond to the spectrum for B0

s → µ+µ− extracted from Monte Carlo. To avoid
a dominance of single events we introduce a maximal and minimal weighting of 10
and 1/10 respectively. Fig. 5.4 shows as an example the weighting process for the
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

bin mµµ ∈ [6,6.5]GeV/c2. This weighting has been applied for the data shown in Fig.
5.3.
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Figure 5.4: Scheme of the weighting procedure to match the momentum spectrum of the parent particle
in Drell-Yan production to the one of B0

s → µ+µ− from Monte Carlo. Left: Unweighted spectrum of
Drell-Yan production for mµµ ∈ [7.0,7.5] GeV/c2, Right: Weighted spectrum of Drell-Yan production for
mµµ ∈ [7.0,7.5] GeV/c2. In both histograms, the red dashed line indicates the B0

s → µ+µ− Monte Carlo.

Fig. 5.3 shows that the invariant mass resolution is reasonably well approximated by
linear function in the region of the Charmonium and Bottomium resonances (i.e. mµµ ∈
[3,11]GeV/c2). On the other hand we see that the linear approximation does not hold
anymore if a larger invariant mass range is considered. The shape of the curve is better
described by a power law:

σmµµ
= a1 ·m1+γ

µµ + a0, (5.8)

For the range of mµµ ∈ [3,11]GeV/c2, the linear fit gives χ2/ndf = 22.24/14 while the
power law gives leads to χ2/ndf = 13.03/13. Over the full range the fit qualities are
in case of the linear function χ2/ndf = 243.11/38 and in case of the power law gives
χ2/ndf = 66.35/37.

The fit to the Drell-Yan Monte Carlo data in the range of mµµ ∈ [2,22]GeV/c2 gives
γ = (0.67± 0.04), in good agreement with the prediction of γ = 0.64± 0.05 from the
relative momentum error (obtained in Sec. 5.2.1).

We assign a systematic uncertainty on the estimated B0
(s) mass resolution due to the

assumption of a linear invariant mass resolution by taking the difference of the predic-
tions from a linear fit and from a power law fit over mµµ ∈ [3,11]GeV/c2 to the Drell-
Yan Monte Carlo data. These differences are 0.48MeV/c2 at mB0

s
and 0.44MeV/c2 at

mB0 .
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5.2 The Invariant Mass Resolution as a Function of the Invariant Dimuon Mass

5.2.3 The Invariant Mass Resolution in J/ψ(1S), ϒ (1S) and Z0

Monte Carlo

We now use Monte Carlo J/ψ(1S)→ µ+µ− and ϒ (1S)→ µ+µ− samples to further
study the interpolation method for the invariant mass resolution at mB0

(s)
. We apply again

the event weighting described in Sec. 5.2.2 on the two samples.
Fig. 5.5 and 5.6 show the invariant mass spectra of the two resonances after momentum
weighting. They are fitted with a double Crystal Ball function (4.1). The invariant mass
spectrum from Monte Carlo has already been shown in Fig. 4.2.

The parameters extracted from these fits are shown in Tab. 5.1 and 5.2.

Table 5.1: Parameters of the Crystal Ball fit to J/ψ(1S)→ µ+µ− and ϒ (1S)→ µ+µ− after momentum
weighting. The values for B0

s → µ+µ− from Monte Carlo are shown for comparison.
Parameter J/ψ(1S) B0

s ϒ (1S)
αl 1.25±0.03 1.56±0.04 1.31±0.04

αr -1.61±0.03 -1.40±0.07 -1.49±0.04

nl 5.55±0.42 1.43±0.08 7.30±0.90

nr 4.69±0.31 9.80±2.00 5.60±0.50

µ 3097.62±0.06 MeV/c2 5366.96±0.17 MeV/c2 9461.98±0.17 MeV/c2

σ 12.08±0.05 MeV/c2 18.75±0.15 MeV/c2 30.41±0.15 MeV/c2

Table 5.2: Parameters of the Crystal Ball fit to J/ψ(1S)→ µ+µ− and ϒ (1S)→ µ+µ− before momen-
tum weighting. The values for B0

s → µ+µ− from Monte Carlo are shown for comparison.
Parameter J/ψ(1S) B0

s ϒ (1S)
αl 1.93±0.03 1.56±0.04 1.21±0.04

αr -1.64±0.04 -1.40±0.07 -1.37±0.03

nl 2.26±0.12 1.43±0.08 9.10±1.30

nr 3.98±0.29 9.80±2.00 7.11±0.07

µ 3097.34±0.06 MeV/c2 5366.96±0.17 MeV/c2 9462.27±0.18 MeV/c2

σ 11.79±0.05 MeV/c2 18.75±0.15 MeV/c2 32.68±0.17 MeV/c2

The linear interpolation,
σmµµ

= a1 ·mµµ + a0, (5.9)

of the invariant mass resolution from J/ψ(1S) and ϒ (1S) is shown in Fig. 5.7. The
parameters of the interpolation and the predicted invariant mass resolution for B0

s →
µ+µ− are displayed in Tab. 5.3.

We see that the estimated mass resolutions from the interpolation are in good agreement
withthe one directly extracted from B0

s Monte Carlo (σmµµ
= 18.75± 0.15) when we
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Figure 5.5: Invariant mass distribution for J/ψ(1S)→ µ+µ− from Monte Carlo, after event weighting
to match the B0

s momentum spectrum from B0
s → µ+µ−. The used fit model is a double Crystal Ball

function.
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Figure 5.6: Invariant mass distribution for ϒ (1S)→ µ+µ− from Monte Carlo, after weighting to match
the B0

s momentum spectrum from B0
s → µ+µ−. The used fit model is a double Crystal Ball function.
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Figure 5.7: Linear interpolation of the invariant mass resolution from J/ψ(1S) and ϒ (1S) to mB0
s
. The

red dots and line show the invariant mass resolution determined without momentum weighting described
in the text. The blue dots and line show invariant mass resolutions determined using momentum weight-
ing. The black dot indicates the measured invariant mass resolution from B0

s → µ+µ− Monte Carlo.
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Figure 5.8: Invariant mass distribution for Z0→ µ+µ− Monte Carlo. The fit model is a single Crystal
Ball convolved with a Breit-Wigner function.
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

Table 5.3: Parameters of linear regression for the invariant mass resolution between J/ψ(1S) and ϒ (1S)
and interpolated mass resolution for B0

s

Parameter unweighted weighted

a0 1.61± 0.11 MeV/c2 3.15± 0.11 MeV/c2

a1 (3.29±0.03)·10-3 (2.88±0.03)·10-3

correlation ρ -0.91 -0.88

σmµµ ,pred. 19.25± 0.07 MeV/c2 18.61± 0.07 MeV/c2

use the weighting method.
These result demonstrates that the interpolation method delivers a reliable prediction
of the invariant mass resolution for B0

s → µ+µ−. Furthermore, we see that the use of
the weighting procedure gives a more precise result. It will therefore be used in the
interpolation from data.

We look now at the Z0→ µ+µ− Monte Carlo to check the interpolation over a wider
invariant range. As the momentum spectrum of the Z0 is completely different from
the one of B0

s , we can not apply the reweighting procedures. Therefore we look at the
unweighted spectrum for all resonances.
The natural width of the Z0 resonance is with ΓZ = 2.49GeV/c2 [25] of the same order
of magnitude as the invariant mass resolution. Therefore we do not fit a simple Crystal
Ball function, but a Crystal Ball function convolved with a Breit-Wigner function. The
spectrum and fit are shown in Fig. 5.8 and the extracted parameters in Tab. 5.4.

Table 5.4: Fit parameters of Z0→ µ+µ− from Monte Carlo
Parameter Value

α 1.65±0.12

n 1.03±0.14

µ 91.24±0.03 GeV/c2

σ 0.94±0.07 GeV/c2

Γ 2.49±0.09 GeV/c2

Fig. 5.9 shows the invariant mass resolution from J/ψ(1S), ϒ (1S) and Z0. We see that
a linear extrapolation to the mass of Z0 fails. The figure shows the power law fit to the
unweighted Drell-Yan Monte Carlo (Eq. 5.8). This curve predicts the invariant mass
resolution of Z0 within its error.

5.2.4 Conclusion of Monte Carlo Studies

We conclude for these studies that the assumption of a linear dependence of the invari-
ant mass resolution on the invariant mass is a valid approximation over the invariant
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Figure 5.9: Invariant mass resolution of the J/ψ(1S), ϒ (1S) and Z0 resonances. The black dashed (- -)
line shows the power law fit from the Drell-Yan Monte Carlo without momentum weighting in the range
mµµ ∈ [3,11]GeV/c2, the black solid (–) line the linear fit in the same range.

mass region from the Charmonium and Bottomium resonances. For the extraction of
σmµµ

(mB0
s
) from data we will use a linear interpolation between the five considered res-

onances J/ψ(1S) and ψ(2S) as well as ϒ (1S), ϒ (2S) and ϒ (3S). The limitation of five
data points clustered in two groups discourages the use of a power law function.

5.3 The Invariant Mass Resolution from Data

After the Monte Carlo studies we are going to apply the interpolation method on data us-
ing the dimuon resonances J/ψ(1S) and ψ(2S) as well asϒ (1S), ϒ (2S) andϒ (3S).

5.3.1 Data Samples and Selection

The data used in the following analysis is the whole 2010 data set. The dimuon candi-
dates are built from two tracks meeting the requirement to be a muon2. In addition the

2A particle fulfills the so-called IsMuon requirement at LHCb if there is a certain number of muon
station hits in a Field of Interest defined by the track extrapolation. The number of required hits is
momentum dependent: p ∈ [3,6] GeV/c: hits in M2 and M3, p ∈ [6,10] GeV/c: hits in M2 and M3 as
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

tracks have to be of good fit quality (χ2
track/ndf < 4) and have a transverse momentum

of the muon has to be larger than pT > 1000 MeV/c. The fit quality requirement of the
primary vertex fit has to have χ2

PV/ndf < 10.
We look at the charmonia (J/ψ(1S) and ψ(2S)) and the bottomia (ϒ (1S), ϒ (2S) and
ϒ (3S)) separately. The considered mass windows are [2.9,3.9] GeV/c2 for charmonia
and [9,11] GeV/c2 for bottomia.

5.3.2 Dimuon Resonances and Interpolation

To each of the two data sets (charmonia and bottomia) we apply the momentum weight-
ing procedure described in Sec. 5.2.2 to match the parent momentum spectra to the B0

s
momentum spectrum in B0

s → µ+µ− Monte Carlo.
The invariant mass distribution for J/ψ(1S) and ψ(2S) is shown in Fig. 5.10, for
ϒ (1S), ϒ (2S) and ϒ (3S) in Fig. 5.11. The fit models for the resonances are double
Crystal Ball functions having the transition points and exponents for both tails fixed to
the values extracted from the Monte Carlo study (cf. Tab. 5.1, J/ψ(1S) values for char-
monia and ϒ (1S) values for bottomia). Background is due to combinatorial background
and Drell-Yan processes and is described by an exponential distribution.
The hit results for the mean µ and width σ of the Crystal Ball functions as well as the
relative signal yields fi of the resonances are shown in Tab. 5.5.

Table 5.5: Mean, width and relative yields of J/ψ(1S) and ψ(2S) as well as ϒ (1S), ϒ (2S) and ϒ (3S)
from data with momentum weighting of the dimuon system.

Resonance µ [MeV/c2] σ [MeV/c2] fi

Charmonia

J/ψ(1S) 3092.85±0.05 17.41±0.05 0.963±0.001

ψ(2S) 3679.5 ±0.9 19.7± 0.5 0.037±0.001

Bottomia

ϒ (1S) 9451.7 ±0.4 46.3± 0.4 0.744±0.004

ϒ (2S) 10013.2 ±1.0 48.9± 1.0 0.170±0.003

ϒ (3S) 10341.8 ±1.9 56.2± 2.1 0.086±0.005

The linear interpolation between the extracted invariant mass resolutions is displayed
in Fig. 5.12 where the solid horizontal black line shows the interpolated invariant mass
resolution for B0

s and the horizontal dashed line shows the value for B0. The values
for the masses of the B mesons are taken from the previous chapter (i.e. Eq. (4.6) and
(4.7)). The red shaded band indicates the statistical error on the interpolated invariant
mass resolution for B0

s and the grey shaded band shows the systematical error which is

well as in M4 or M5, p > 10 GeV/c: hits in M2, M3, M4 and M5 (cf. Ref. [17]).
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Figure 5.10: Dimuon invariant mass distribution showing J/ψ(1S) and ψ(2S) resonances. The distribu-
tion is described by two double Crystal Ball functions for the signal (red solid (–) line) and an exponential
distribution for the combinatorial background (blue dashed (- -) line).
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Figure 5.11: Dimuon invariant mass distribution showing ϒ (1S), ϒ (2S) and ϒ (3S) resonances. The
signal distribution is described by three double Crystal Ball functions for the signal (red solid (–) line)
and an exponential distribution for the combinatorial background (blue dashed (- -) line).
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discussed in detail below (Sec. 5.3.4).
The values for the interpolated invariant mass resolution and their statistical error are:

B0→ µ
+

µ
− : σ = 27.4±0.3 MeV/c2 (5.10)

B0
s → µ

+
µ
− : σ = 27.8±0.3 MeV/c2. (5.11)
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Figure 5.12: Interpolation of the Charmonia and Bottomia resonances from data (black thick solid line
(–)). The thin black solid line shows the interpolated invariant mass resolution of 27.8 MeV/c2 for mB0

s
together with the statistical error (red band) and the systematic error (grey band). The interpolated invari-
ant mass resolution for mB0 (27.4 MeV/c2) is indicated by the thin black long dashed (– –) line below the
red band.

5.3.3 Z0 resonance

As in the Monte Carlo section we study the shape of the invariant mass resolution de-
rived from the inclusion of Z0 → µ+µ−. We have to use as already explained in the
Monte Carlo section the non momentum-weighted data samples to get comparable re-
sults between the now in total six dimuon resonances.
For the Z0 signal peak we use a single Crystal Ball function convolved with a Breit-
Wigner distribution to describe the invariant mass distribution. The parameters of the
radiative tail α and n of the Crystal Ball are fixed to their values derived from Monte
Carlo (cf. Tab. 5.4). Furthermore, we use an exponential function to describe the com-
binatorial background and the background from Drell-Yan processes.
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5.3 The Invariant Mass Resolution from Data

Fig. 5.13 shows the measured invariant mass distribution and the maximum-likelihood
fit while Tab. 5.6 lists the resulting fit parameters. The fit results in a value for Γ which
is in good agreement with the PDG value of 2.49 GeV/c2 [25]. Tab. 5.7 lists the peak
positions and the widths of all the six dimuon resonances.
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Figure 5.13: Invariant mass resolution for Z0 → µ+µ− from data. The distribution is described by a
convolution of a single Crystal Ball function and a Breit-Wigner function for the signal (red solid (–)
line) and an exponential distribution for the combinatorial background (blue dashed (- -) line).

Table 5.6: Fit parameters of Z0→ µ+µ− from data
Parameter Value

µ 91.16±0.08 GeV/c2

σ 2.19±0.15 GeV/c2

Γ 2.36±0.25 GeV/c2

As already seen in the Monte Carlo study (cf. Sec. 5.2.3), the linear regression using
the charmonia and bottomia resonances fails to predict the invariant mass resolution for
Z0→ µ+µ− (cf. Fig. 5.14). Like in Monte Carlo a better description is obtained by a
power-law function.

The extracted exponent of the power law function β = 1.62±0.32 is in good agreement
with the values derived in the Monte Carlo section from the Drell-Yan Monte Carlo (cf.
Sec. 5.2) as well as the estimation from relative momentum errors (cf. Sec. 5.1).

It should be noted that we observe as in Chapter 4 for the B0
(s) → h+h− a systematic

shift in the measured peak positions of the dimuon resonances to lower values than the
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

Table 5.7: Mean, width and relative yields of the six considered dimuon resonances from fits to data
without momentum weighting of the dimuon systems.

Resonance µ [MeV/c2] σ [MeV/c2] fi

Charmonia

J/ψ(1S) 3093.03± 0.1 14.63± 0.1 0.966±0.002

ψ(2S) 3680.1 ± 1.0 17.2 ± 0.5 0.034±0.002

Bottomia

ϒ (1S) 9449.9 ± 0.4 50.6 ± 0.4 0.719±0.004

ϒ (2S) 10013.0 ± 1.1 54.3 ± 1.1 0.184±0.003

ϒ (3S) 10341.6 ± 2.0 60.4 ± 2.2 0.077±0.005

Z0 91160.0 ±80.0 2190.0 ±150.0 1.0
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Figure 5.14: Invariant mass resolution of charmonia, bottomia and Z0 resonances. The blue curve is the
power law and the black one the linear function, both fitted to the charmonia and bottomia resonances.
The bands indicate the error on the functions. At mB0

(s)
both functions agree within the errors. The power

law extrapolates the invariant mass resolution of Z0 within the error.
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5.3 The Invariant Mass Resolution from Data

nominal masses [25]. Fig. 5.15 shows α = mmeas/mPDG for all the fitted peak positions
of the different particles. The values of obtained for the different resonances are in good
agreement with each other. Their weighted average gives of α = 0.9989±0.0002. This
systematic shift is caused by scaling effects in the dipole magnet field and the alignment
of the tracking system.

PDG/mmeasm
0.996 0.998 1

(1S)ψJ/

(2S)ψ

0B

0
sB

(1S)Υ

(2S)Υ

(3S)Υ

0Z

/ndf = 7.18/7)2χAverage (

Figure 5.15: Ratio α of the measured to the nominal masses mmeas/mPDG for charmonia and bottomia
dimuon resonances, B0→ h+h− and B0

s → h+h− as well as Z0→ µ+µ−.

5.3.4 Systematics

To estimate the systematics on the interpolated mass resolutions we check for the effects
listed in the following. The assigned systematics are summarized in Tab. 5.8. The
change in the interpolated mass resolutions are shown in the text.

1. Selection cuts: The systematics due to the selection cuts are studied by con-
sidering the resulting interpolation values if we change individually one of the
three selection cuts on the transverse muon momentum, the track fit quality and
the primary vertex fit quality. The cut on transverse momentum was changed to
pT > 1200 MeV/c (B0

s : σ = 27.59MeV/c2, B0 : σ = 27.22MeV/c2) and pT >
800 MeV/c (B0

s : σ = 27.72MeV/c2, B0 : σ = 27.41MeV/c2), the track fit quality
cut was altered to χ2

track/ndf < 3 (B0
s : σ = 27.61MeV/c2, B0 : σ = 27.25MeV/c2)

and χ2
track/ndf < 5 (B0

s : σ = 27.46MeV/c2, B0 : σ = 27.79MeV/c2) and the
cut on the primary vertex fit quality was changed to χ2

PV/ndf < 8 (B0
s : σ =
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5 Invariant Mass Resolution from Interpolation of Dimuon Resonances

27.42MeV/c2, B0 : σ = 27.68MeV/c2) and χ2
PV/ndf < 12 (B0

s : σ = 27.39MeV/c2,
B0 : σ = 27.66MeV/c2).

2. Weighting procedure: We estimate the systematics due to the weighting pro-
cedure by using on one hand an alternative method. This method removes or
multiplies events such that it adapts the momentum spectrum of B0

s → µ+µ−

for the parent particle (B0
s : σ = 27.27MeV/c2, B0 : σ = 26.73MeV/c2). On

the other hand the value for the maximal/minimal weighting was changed to
(5,1/5) (B0

s : σ = 27.45MeV/c2, B0 : σ = 27.02MeV/c2) and (20,1/20) (B0
s : σ =

27.71MeV/c2, B0 : σ = 27.32MeV/c2) respectively. The deviations of the two
checks were then quadratically added.

3. Fit model: Two tests are performed to estimate the systematics due to the fit
model for the invariant mass distributions.
In the first test, the peak distribution is described by a single Crystal Ball func-
tion with a left hand tail only and at the same time releasing the tail parameters
from their values derived from Monte Carlo (B0

s : σ = 27.34MeV/c2, B0 : σ =
27.82MeV/c2).
In the second test, the maximum-likelihood fit is split into two steps: In the first
step, the background model (exponential distribution) is fitted from the sidebands
of the invariant mass distributions, where we define the sidebands as the areas at
least 80 MeV/c2 (160 MeV/c2) away from any of the charmonium (bottomium)
resonances. The exponential parameter is fixed for the second step, in which
we fit the resonances with a double Crystal Ball function where all parameters
are free. In this way we avoid on the correlation between the exponential pa-
rameter of the background and the tail parameters of the Crystal Ball function
(B0

s : σ = 26.92MeV/c2,B0 : σ = 27.36MeV/c2).
The deviations of the derived invariant mass resolution for B0

(s) from these two
checks are taken as systematic uncertainty by quadratically adding them.
As a further check we fit – after extracting the background from the sidebands –
the mass peaks with a gaussian but only using the data point above the transition
points of the left-hand tail αl extracted from Monte Carlo. This allows us to check
the influence of a possible bias on the width of the gaussian arising from an im-
perfect description of the left-hand radiative tail by the Crystal Ball function. The
influence of this modification on the width of the gaussian turns out to be small
and is therefore neglected.

4. Different statistical errors: Due to the large differences in statistics among the
resonances the interpolation is dominated by the J/ψ(1S) and ϒ (1S) resonances
which have much smaller statistical errors on σ than ψ(2S), ϒ (2S) and ϒ (3S).
The systematics of this dominance is estimated from the change in the interpo-
lated invariant mass resolutions if the errors on the resolutions of the different
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5.3 The Invariant Mass Resolution from Data

resonances are set to a common value (the magnitude of the error does not have
an influence on a linear regression) and the error of the positions of the reso-
nances along the invariant mass axis is set to zero (B0

s : σ = 26.94MeV/c2, B0 :
σ = 27.32MeV/c2).

5. Mass window: The value of the invariant mass resolution changes within the
mass windows of ±60 MeV/c2 around the B0

(s) masses, which are used for the

B0
(s)→ µ+µ− analysis. The change of the linear interpolated value over 60 MeV/c2

is included as a systematic uncertainty.

6. Assumption of linear dependence of invariant mass resolution on the invari-
ant mass: The systematic uncertainty assigned due to this assumption is the one
derived from the Drell-Yan Monte Carlo study described in Sec. 5.2.2.

Table 5.8: Systematic uncertainties on the interpolation method using dimuon resonances to estimate the
invariant mass resolution at mB0 and mB0

s

Systematic uncertainties Value B0 Value B0
s

Selection cuts ±0.38 MeV/c2 ±0.21 MeV/c2

Weighting procedure ±0.61 MeV/c2 ±0.53 MeV/c2

Fit model ±0.50 MeV/c2 ±0.58 MeV/c2

Asymmetric statistical errors ±0.23 MeV/c2 ±0.39 MeV/c2

Mass window ±0.27 MeV/c2 ±0.27 MeV/c2

Assumption of linear characteristic ±0.44 MeV/c2 ±0.48 MeV/c2

Total systematic ±1.04 MeV/c2 ±1.06 MeV/c2

The systematic uncertainties are combined by summing them quadratically as there is
no significant correlation among them. The total systematic uncertainty assigned to the
interpolated invariant mass resolution for B0

s → µ+µ− ( B0 → µ+µ−) is 1.1 MeV/c2

(1.0 MeV/c2).

The final results of the interpolation method are therefore:

B0→ µ
+

µ
− : σ = 27.4±0.3 (stat.) ±1.0 (syst.) MeV/c2 (5.12)

B0
s → µ

+
µ
− : σ = 27.8±0.3 (stat.) ±1.1 (syst.) MeV/c2 (5.13)
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6 Invariant Mass Resolution from
B0

(s)→ h+h−

In this chapter we extract the expected B0
(s) → µ+µ− invariant mass resolution from

decays of B0 and B0
s into two charged kaons or pions. These decays are similar in

topology and kinematics to the B0
(s)→ µ+µ− decays.

6.1 Separation of Different Decay Modes using
RICH Information

There are – as already shown in Chapter 4 – in total four different decay modes of B0
(s)

decaying into two kaons or pions [25]:

B0 → π+π− B = (5.13±0.24) ·10−6

B0
(s) → π+K− B = (1.94±0.06) ·10−5 (B0), = (4.9±1.0) ·10−6 (B0

s )
B0

(s) → K+π− B = (1.94±0.06) ·10−5 (B0), = (4.9±1.0) ·10−6 (B0
s )

B0
s → K+K− B = (3.3±0.9) ·10−5

(6.1)

To assign the correct mass hypothesis for the final state particles in the reconstruction
of the B meson, we have to identify the kaons and pions by using the information from
the two RICH detectors.
As explained in Chapter 4, the significance of a certain particle hypothesis i against
another hypothesis j is represented by the Delta log-likelihood variable DLLi− j. The
ratio between the probability that the particle h is of type i to the probability that the
particle is of type j, is given by:

pi(h)
p j(h)

= exp(DLLi− j). (6.2)

59



6 Invariant Mass Resolution from B0
(s)→ h+h−

The DLLK−π variable is mainly based on information from the RICH detectors, i.e. the
comparison of the detected Cherenkov ring to the expected for a kaon or a pion with
momentum p measured by the tracking system. As shown in Fig. 6.1 and 6.2, the
separation power is strongly dependent on p. Therefore applying cuts on the DLLK−π

variable leads to implicit cuts on the track momentum: Particles with very high momen-
tum are more likely to be cut away than particles with lower momentum. This biases
the observed invariant mass resolution.

Figure 6.1: The Cherenkov angle of the three
radiators used in LHCb (RICH1: Aerogel and
C4F10; RICH2: CF4) as a function of the track
momentum and the particle hypotheses. The
separation of the different hypotheses is de-
creasing with increasing momentum [23].
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Figure 6.2: The track momentum p versus
the DLLK−π of the charged particles in two
hadronic body decays. A cut of |DLLK−π | >
6 corresponds defacto to a cut of about p <
150 GeV/c.

Other distributions that can be biased by a cut on the DLLK−π variable are the trans-
verse momentum pT and the pseudorapidity η of the particle1 as well as the number of
charged tracks and the number of primary vertices in the event. These dependencies are
shown in Fig. 6.3.

Therefore applying cuts on the DLLK−π variable we have to correct for the efficiency
of this cut in bins of these affected variables in order to remove the bias on the invariant
mass distribution, especially on the invariant mass resolution.

1Note that p, pT and η are linked by η = 1
2 log

(
p+
√

p2−p2
T

p−
√

p2−p2
T

)

60



6.1 Separation of Different Decay Modes using RICH Information

)2(h) (MeV/c
T

p
0 20000 40000 60000 80000 100000

a.
u

.

|>0
πK-

|DLL

|>5
πK-

|DLL

|>10
πK-

|DLL

|>15
πK-

|DLL

(h)η
2 3 4 5

a.
u

.

|>0
πK-

|DLL

|>5
πK-

|DLL

|>10
πK-

|DLL

|>15
πK-

|DLL

number of charged tracks
0 200 400 600 800

a.
u

.

|>0
πK-

|DLL

|>5
πK-

|DLL

|>10
πK-

|DLL

|>15
πK-

|DLL

number of PV's
2 4 6 8 10

a.
u

.

|>0
πK-

|DLL

|>5
πK-

|DLL

|>10
πK-

|DLL

|>15
πK-

|DLL

Figure 6.3: Distributions of track transverse momentum pT (top left), track pseudorapidity η (top right),
number of charged tracks in the event (bottom left) and number of primary vertices (bottom right) distri-
butions for different cuts on |DLLK−π |
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6.2 Determination of the RICH Efficiency

6.2.1 Variable Binning

The determination of the RICH efficiency should ideally be done in bins for all the
variables listed above. Due to the limited statistics in the 2010 data set which is used
in this analysis we restrict ourselves to those variables having the largest impact on
the invariant mass resolution. These are the track momentum and the track transverse
momentum.

Following bins in p and pT were chosen:

p binning: [2,5,10a,16b,20,23,26,30,60c,105,150] GeV/c
pT binning: [0.5,5,50] GeV/c (6.3)

The marked bins correspond to the boundaries of the different radiators:
a Upper threshold of the Aerogel radiator
b Lower threshold of the CF4 radiator
c Upper threshold of the C4F10 radiator [23]

6.2.2 Extraction of the RICH Efficiency

The chosen binning scheme gives 20 (= 2× 10) two-dimensional bins in which we
determine the RICH efficiency and its error for different cuts on DLLK−π . As an ex-
ample, Fig. 6.4 shows the kaon and pion identification efficiencies in bins of p and pT
for different cuts on DLLK−π . The used calibration data comes from the decay modes
D∗+ → D0(K−π+)π+ and D∗− → D0(K+π−)π− where the soft pion is assumed to
come from the decay of the D∗ meson for tagging. Kaons and pions can be identified in
these decay modes by charge. Further the modes have the advantage of a large statistic
and of having very low background. Therefore the efficiency determination can base
on a counting method: The efficiency is the ratio of the number of events passing the
DLLK−π cut to the number of total events in the considered (p, pT )-bin. The error on the
efficiency is based on the statistical error, but takes into account possible contamination
from background.
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Figure 6.4: Reconstructed RICH efficiencies for pions (left) and kaons (right) in bins of p and pT , for
a cut of DLLK−π < 0 (pions) and DLLK−π > 0 (kaons) in the top row and for a cut of DLLK−π < −3
(pions) and DLLK−π > 3 (kaons) in the bottom row. The efficiency scale is linear from 0.0 (violet) to 1.0
(red). The white area represents the kinematically not allowed region p < pT .
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6.3 Invariant Mass Distribution with Efficiency
Corrected

To estimate the unbiased invariant mass resolution for B0
(s) → h+h− we look at the

invariant mass distribution for different cuts κ on DLLK−π . For a given value κ we
identify a particle h as a kaon if DLLK−π(h) > κ and as a pion if −DLLK−π > κ . We
do this for both final state particles in the decay and assign each event to one of the four
decay modes and to the corresponding mass hypothesis according to (6.4).

B0→ π+π− if −DLLK−π(h+) > κ & −DLLK−π(h+) > κ

B0
(s)→ π+K− if −DLLK−π(h+) > κ & DLLK−π(h−) > κ

B0
(s)→ K+π− if DLLK−π(h+) > κ & −DLLK−π(h−) > κ

B0
s → K+K− if DLLK−π(h+) > κ & DLLK−π(h−) > κ

(6.4)

For κ > 0 we obtain for every accepted event a well-defined mass hypothesis.

Due to the relatively small size of the data sample we will not look at the different decay
modes individually, but at an inclusive invariant mass distribution of B0

(s)→ h+h−. The
used data sample is the same as described in Sec. 4.1.1. In addition we apply a cut on
the Geometrical Likelihood of GL > 0.2 to reduce the background.
We only consider events where both particles fulfill p ∈ [2,150]GeV/c and pT ∈ [0.5,
50]GeV/c. This restriction implies a bias on the invariant mass resolution which we
correct for by introducing a correction factor γ . We use two different data samples to
check this correction factor: We determine γ as the ratio between the invariant mass
resolutions with and without these cuts on p and pT . γ is extracted on one hand from a
B0

s → µ+µ− Monte Carlo sample as the ratio between the widths of the double Crystal
Ball functions fitted to the invariant mass distributions (γ = 1.027±0.013). On the other
hand we determine γ from the invariant mass resolution using the interpolation method
applied on data described in Chapter 5 (γ = 1.043± 0.015), where we apply the cuts
on p and pT on the dimuon resonances. The results from both methods are in good
agreement and we take the weighted average of

γ = 1.034±0.009. (6.5)

When creating the B0
(s) → h+h− invariant mass distribution, a weight w depending on

the estimated particle identification efficiency as a function of p and pT of the two
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6.3 Invariant Mass Distribution with Efficiency Corrected

involved final states particle defined by (6.6) is assigned to every event.

w =



1
επ (p(h+),pT (h+),κ)·επ (p(h−),pT (h−),κ) if −DLLK−π(h+) > κ & −DLLK−π(h−) > κ ,

1
επ (p(h+),pT (h+),κ)·εK(p(h−),pT (h−),κ) if −DLLK−π(h+) > κ & DLLK−π(h−) > κ ,

1
εK(p(h+),pT (h+),κ)·επ (p(h−),pT (h−),κ) if DLLK−π(h+) > κ & −DLLK−π(h−) > κ ,

1
εK(p(h+),pT (h+),κ)·εK(p(h−),pT (h−),κ) if DLLK−π(h+) > κ & DLLK−π(h−) > κ ,

(6.6)
where επ is the efficiency for pions and εK is the efficiency for kaons.

Events, where one of the two particles falls into a (p, pT )-bin for which the efficiency
is ε < 0.005, are skipped to avoid dominance by single events. As shown later, this
procedure leads to a bias on the estimated invariant mass resolution if strong cuts on the
DLL variable are applied. Therefore results obtained for strong cuts on the DLL value
are not taken into account for the extraction of the invariant mass resolution.

The invariant mass distribution is shown in Fig. 6.5 for κ = 0 and in Fig. 6.6 for κ = 3.
To extract the invariant mass resolution from the invariant mass distributions we per-
form a maximum likelihood fit assuming the following model:

• Signal: Two double Crystal Ball functions (B0 and B0
s ) with the parameters αl,r

and nl,r fixed to the values obtained from a fit to a large B0
(s)→K±π∓Monte Carlo

sample and a common width σIM of the gaussian being taken as the invariant mass
resolution.

• Physical background: Contributions from the decay modes Λ0
b → p±K∓/π∓

where the (anti-)proton is misidentified as a kaon (or a pion) are described by a
gaussian with a variable mean and a width that is constrained to be larger than
30 MeV/c2.
Contributions from the decay modes B→ hhh where one track is missed are also
described by a gaussian with a variable mean and a width that is constrained to be
larger than 50 MeV/c22.

• Combinatorial background: The combinatorial background is described by an
exponential distribution.

2We use a different description for this contribution here than in Sec. 4.2 (cf. [15]) because the
efficiency correction changes the shape of the physical background from B→ hhh contribution. This is
because the involved final state particles tend to have lower momenta than the particles in B0

(s)→ h+h− .
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Figure 6.5: Invariant h+h− mass distribution for |DLLK−π | > 0 and the corresponding maximum like-
lihood fit. The signal peaks are displayed by the red solid (–) line, the physical background as black
dashed (- -) line and the combinatorial background as blue dashed line. The contribution from the decay
Λ0

b→ p±K∓/π∓ is not visible.
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Figure 6.6: Invariant h+h− mass distribution for |DLLK−π | > 3 and the corresponding maximum like-
lihood fit. The signal peaks are displayed by the red solid (–) line, the physical background as black
dashed (- -) line and the combinatorial background as blue dashed line. The contribution from the decay
Λ0

b→ p±K∓/π∓ is not visible.
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6.4 Invariant Mass Resolution as a Function of the
DLLK−π Cut

We determine the invariant mass resolution σIM as a function of the DLL cut κ in a
range of κ ∈ [0,10] in steps of 0.5. The result is displayed in Fig. 6.7.
As expected, the invariant mass resolution decreases with increasing κ and seems to
converge toward a value σunbias. We define this value as the unbiased invariant mass
resolution. This decrease in σIM is caused as with increasing κ the fraction of events
where one or even both particles are misidentified is decreasing. In principle, a con-
tribution of events with wrong mass hypothesis leads to a too large width of the signal
peaks.
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Figure 6.7: Invariant mass resolution as a function of the DLLK−π cut. The solid (–) line shows the fit
model described in (6.7) while the dashed (- -) displays the same function with κ0 = r = 1 (i.e. assuming
the DLLK−π variable to be a perfect log-likelihood). The black data points indicate the range of the
DLLK−π values not used for the fit.

At a value of κ ≈ 6, σIM drops abruptly. The reason is that all the particles in the highest
part of the considered momentum spectrum ([2,150]GeV/c) do not pass such strong
DLL cuts (cf. Fig. 6.2). This effect can not be corrected by the weighting procedure
and leaves an unavoidable bias on the invariant mass resolution as events with lower
momentum particles tend to have a smaller invariant mass resolution.
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Figure 6.8: Fraction of skipped events with one of the particles in a (p, pT ) bin with efficiency ε < 0.005
as a function of κ . The black line shows the defined threshold of 0.1. Only values for κ ≤ 5.5 are included
in the extraction of the unbiased invariant mass resolution.

The fraction of events which are skipped as they contain a particle falling into a (p, pT )
bin, where the efficiency is ε < 0.005, is larger than 10% for κ ≥ 6 (cf. Fig. 6.8).
Therefore to extract σunbias we take into account only the range of κ ∈ [0,5.5]. We
extract σunbias by fitting the function

σIM(κ) = σunbias +
σmis-ID

1 + r · exp (κ/κ0)
. (6.7)

This function represents the two contributions to σIM: The actually unbiased invariant
mass resolution and the contribution from misidentified final state particles. For the
second contribution we take into account that the probability to misidentify a kaon as a
pion is pmis-ID = 1/(1 + exp(DLLK−π)) and pmis-ID = 1/(1 + exp(−DLLK−π)) vice
versa based on the definition of the delta log-likelihood (cf. (6.2)). The parameters r
and κ0 represent the fact that the DLLK−π value is not a perfect log-likelihood. The
fitted function is shown in Fig. 6.7, the fitted parameters are listed in Tab. 6.1.

In a last step we correct the extracted unbiased invariant mass resolution for the cuts on
p and pT by the correction factor γ

σunbias,corr = σunbias · γ (6.8)

68



6.5 Systematics and Final Result

Table 6.1: Fit parameters of σIM(κ)
Parameter Value

σunbias 25.59±0.21 MeV/c2

σmis-ID 5.8 ±1.3 MeV/c2

κ0 0.35±0.38

r 0.53±0.75

and obtain the final result of

σunbias,corr = (26.46±0.58) MeV/c2, (6.9)

where the quoted error is the mean of the errors on σIM for κ ∈ [0,5.5]. We take this
value rather than the error returned by the fit as the errors on σIM for different values of
κ are strongly correlated.

6.5 Systematics and Final Result

Different potential sources for systematics have been studied. In the following we
briefly describe these sources and how we estimate the corresponding uncertainties.
The values for the systematic uncertainties are summarized in Tab. 6.2.

1. GL cut: The systematic error due to the cut on the Geometrical Likelihood is
defined as the maximal deviation on σunbias,corr if we choose a GL cut of 0.25
(σunbias,corr = 25.83 MeV/c2) and of 0.15 (σunbias,corr = 26.32 MeV/c2) instead of
0.20.

2. Considered range of κ: Systematic effects coming from the restriction to κ ∈
[0,5.5] are estimated by fitting the function (6.7) to the range κ ∈ [0,5] (σunbias,corr =
26.68 MeV/c2) as well as κ ∈ [0,6] (σunbias,corr = 26.37 MeV/c2). We take the
maximal deviation to our result as systematic uncertainty.

3. Steps in κ: A systematic effect due to by the step size in κ is determined by look-
ing at the fit result of σIM if we use a step sizes of 0.4 (σunbias,corr = 26.20 MeV/c2),
0.6 (σunbias,corr = 26.32 MeV/c2) and 1.0 (σunbias,corr = 26.39 MeV/c2). We take
the maximal deviation from σunbias,corr with these three choices as systematic un-
certainty. The range of κ is left unchanged.

4. Correction factor γ: The error on γ is taken by simple error propagation of (6.8)
as systematic effect for this correction.

5. Binning scheme of the efficiency determination: The systematic uncertainty
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6 Invariant Mass Resolution from B0
(s)→ h+h−

due to the binning scheme of p and pT is estimated by calculating σunbias,corr in
the three different binning schemes: One with only one bin in pT (σunbias,corr =
25.83 MeV/c2), one with the ten bins in p uniformly distributed (σunbias,corr =
25.37 MeV/c2) and one with one bin in pT but as compensation two bins in η

(η < 3.5 and η > 3.5) bin (σunbias,corr = 25.59 MeV/c2). The maximal deviation
in any of these three scenarios from the actual result is taken as the systematic
effect on the invariant mass resolution.

6. Fit function for the invariant mass distribution: To check systematic effects
due to the chosen fit function for the invariant mass distribution we use a simpli-
fied model where we do not include any physical background and use as signal
distribution two left-handed Crystal Ball functions. This fit yields σunbias,corr =
26.89 MeV/c2 and the difference to the standard result (6.9) is used as the corre-
sponding systematic uncertainty.

7. Fit function for σIM(κ): The systematic due to the fit function σIM(κ) is eval-
uated by using similar functions and taking the maximal deviation from the stan-
dard result (6.9). These functions are:

• The function described in (6.7), but with r = κ0 = 1, i.e. assuming DLLK−π

is indeed a log-likelihood (cf. Fig. 6.7) (σunbias,corr = 26.16 MeV/c2).

• The function described in (6.7) where the square root of the quadratical sum
of the mis-ID part and the unbiased part is taken. This meets a convolution
of two independent Gaussians (σunbias,corr = 25.90 MeV/c2).

• The function

σIM(κ) = σunbias +
σmis-ID

1 + r · exp (κ/κ0)
+

σdouble mis-ID

(1 + r · exp (κ/κ0))2 , (6.10)

which takes the contribution of a mis-identification of both particles into
account (σunbias,corr = 26.47 MeV/c2). As expected the fit results gives a
value compatible with zero (σdouble mis-ID = (1.01±2.08) ·10−4).

We add the different systematics uncertainties quadratically and take the square root to
gain the total systematic uncertainty. This is done as the major contributions (Binning
scheme, GL cut and fit function for σIM(κ)) are independent from each other. We obtain
for the total systematic uncertainty a value of ±1.5 MeV/c2.

The final result is

B0
(s)→ µ

+
µ
− : σ = 26.5±0.6 (stat.) ±1.5 (syst.) MeV/c2 (6.11)
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6.5 Systematics and Final Result

Table 6.2: Systematic uncertainties on σunbiased,corr extracted from the inclusive decay mode B0
(s) →

h+h−

Systematic uncertainty Value
GL cut ±0.63 MeV/c2

Considered range of κ ±0.22 MeV/c2

Steps in κ ±0.26 MeV/c2

Correction factor γ ±0.23 MeV/c2

Binning scheme of the efficiency determination ±1.09 MeV/c2

Fit function for the invariant mass distribution ±0.43 MeV/c2

Fit function for σIM(κ) ±0.56 MeV/c2

Total systematic ±1.51 MeV/c2

which is in very good agreement to the results obtained from the interpolation method
which are:

B0→ µ
+

µ
− : σ = 27.4±0.3 (stat.) ±1.0 (syst.) MeV/c2

B0
s → µ

+
µ
− : σ = 27.8±0.3 (stat.) ±1.1 (syst.) MeV/c2
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7 Determination of the Transition
Point α and the Exponent n of
the Crystal Ball function

The values of the transition point α and the exponent n of the Crystal Ball function
(3.3) are extracted from B0

s → µ+µ− Monte Carlo. This method is chosen as these
parameters are strongly correlated with the width σ of the Gaussian part of the Crystal
Ball function. Furthermore, the exponent n depends mainly on the spectrum of the final
state radiation (FSR) and on the energy loss of the final state particles in the detector
material. Both these effects should be well described in the Monte Carlo simulation.
The idea for the extraction is that we consider the true mass of B0

s , i.e. the invariant mass
unbiased from the detector resolution, but incorporating the effects of FSR and energy
loss in the detector components. This true mass is then smeared by a gaussian with a
width based on the determined invariant mass resolution determined in the previous two
chapters.

7.1 Theoretical Consideration

7.1.1 Turning Point α

The turning point α is the position along the invariant mass axis, measured in units
of σ away from the peak position, where the Crystal Ball function changes from the
Gaussian to the exponential regime defined by the exponent n. The coarser the invariant
mass resolution is, the more the FSR is buried beneath the smearing of the invariant
mass due to its resolution. Therefore a larger invariant mass resolution should lead to a
higher value of α .
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7 Determination of α and n of the Crystal Ball function

7.1.2 Exponent n

The exponent n of the Crystal Ball function is linked to the spectrum ρ(Eγ) of the FSR
by

ρ(Eγ) ∝ E−n
γ . (7.1)

We expect a spectrum of the FSR which is to first order proportional to the inverse of
the photon energy, therefore we expect n = 1 [7].

7.2 Estimation from Monte Carlo Data

7.2.1 Combined values of σ

To obtain the width for the gaussian smearing we combine the two results for the invari-
ant mass resolution presented in Chapters 5 and 6.
As the two results are in good agreement we take their weighted average. The system-
atics of the two methods are not correlated with each other. Therefore we take here for
the combined statistical as well as for the systematic error the standard combination for
weighted averages, i.e.

σstat./syst. =
√

1

∑i
1

σi,stat./syst.

, (7.2)

where i is the index for the different methods.
The combined results (cf. Fig. 7.1) are:

B0→ µ
+

µ
− : σ = 27.1±0.3 (stat.) ±0.8 (syst.) MeV/c2 (7.3)

B0
s → µ

+
µ
− : σ = 27.4±0.3 (stat.) ±0.9 (syst.) MeV/c2 (7.4)

The determined value of σ depends in principle also on the values for n and α chosen
in the analyses in the previous two chapters. We neglect this second order effect by
considering only the influence of σ on n and α and not vice versa.

7.2.2 Determination of σsmear

The correct parameter σsmear for the Gaussian smearing does not necessarily have to be
the invariant mass resolution in (7.3) and (7.4) as there might be interactions of the final
state particles with the material of the detector. To obtain the correct value for σsmear we
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7.2 Estimation from Monte Carlo Data
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Figure 7.1: Summary of the different estimates for the invariant mass resolution σ obtained by the
interpolation method and the method based on B0

(s) → h+h−. The ticks mark the contribution of the
statistical error.
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Figure 7.2: The reconstructed invariant mass resolution σ , extracted from the fit of the invariant mass
distribution, as a function of the value of σsmear used to perform the Gaussian smearing of the true invariant
mass. σIM has an about 2% higher value than σsmear.
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7 Determination of α and n of the Crystal Ball function

consider the invariant mass distribution of the true mass smeared by σsmear for a range
of σsmear ∈ [10,50] MeV/c2. The reconstructed invariant mass resolution is defined as
the width σ of the single Crystal Ball function fitted to the smeared invariant mass res-
olution. For certain value of σsmear one thousand smeared invariant mass distributions
are produced and the mean of the one thousand resulting values from the fit is taken as
value for the reconstructed resolution.
Fig. 7.2 shows the reconstructed resolutions as a function of the smearing parameter
σsmear which can be well parametrized by a linear function σ = a0 + a1 ·σsmear hav-
ing the parameters a0 = (0.15±0.17) MeV/c2 and a1 = (1.023±0.008). As expected,
a1 is larger than 1 and the correct width for the gaussian smearing is smaller than the
invariant mass resolution. We obtain:

B0→ µ
+

µ
− : σsmear = 26.3±0.9 MeV/c2 (7.5)

B0
s → µ

+
µ
− : σsmear = 26.6±1.0 MeV/c2, (7.6)

where the error is the propagated error of the square root of the quadratic sum of the
statistical and systematical error on σ and of the errors on a0 and a1.

In a second step we produce 20’000 invariant mass distributions smeared with the de-
termined σsmear, from each of which we extract the parameters α and n by the fit of a
single Crystal Ball function. We determine the final values of α and n as the mean of
those extracted parameters. As error on α and n we take the means of the errors returned
by the fit. This gives us:

B0→ µ
+

µ
− : α = 2.11±0.05 (7.7)

B0
s → µ

+
µ
− : α = 2.12±0.05 (7.8)

and

B0→ µ
+

µ
− : n = 1.01±0.08 (7.9)

B0
s → µ

+
µ
− : n = 1.02±0.08. (7.10)

The exponent n is – as expected from (7.1) – compatible with n = 1.
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7.3 Systematics and Final Results

7.3 Systematics and Final Results

We take two potential sources of systematics into account. One is the variation of n
and α within the error range of σsmear. The other is the statistical uncertainty on the
extracted parameter due to the random nature of the Gaussian smearing. The systematic
uncertainties assigned to these two sources are listed in Tab. 7.1.

1. Error on σsmear: We consider the dependency of each of these two variables on
the value of σsmear while the other of the two variables is kept constant. The results
are shown in Fig. 7.3 (n; α constant) and 7.4 (α; n constant), respectively. In case
of n we fit a parabola to the data points and in case of α a linear function. These
functions are then used to propagate the errors from σsmear to α and n respectively.

2. Scatter of gaussian smearing: The systematics caused by the random process of
the Gaussian smearing are defined as the standard deviation of the distribution of
α and n from the 20’000 smearing iterations.

As those two systematics are not correlated to each other we combine them by taking
the square root of the quadratical sum as the total systematic errors.

Table 7.1: Systematic uncertainties in the determination of α and n
Systematic uncertainties Value B0 Value B0

s
α n α n

Error on σsmear ±0.05 ±0.08 ±0.05 ±0.08
Scatter of Gaussian smearing ±0.01 ±0.01 ±0.01 ±0.01
Total systematic ±0.05 ±0.08 ±0.05 ±0.08

The final results for α are:

B0→ µ
+

µ
− : α = 2.11±0.05 (stat.) ±0.05 (syst.) (7.11)

B0
s → µ

+
µ
− : α = 2.12±0.05 (stat.) ±0.05 (syst.) (7.12)

The final results for n are:

B0→ µ
+

µ
− : n = 1.02±0.08 (stat.) ±0.08 (syst.) (7.13)

B0
s → µ

+
µ
− : n = 1.01±0.08 (stat.) ±0.08 (syst.) (7.14)
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7 Determination of α and n of the Crystal Ball function
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Figure 7.3: n as a function of σsmear with α kept constant to the determined value in case of a Gaussian
smearing for B0

s . The shape is parametrized by a parabola.
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Figure 7.4: α as a function of σsmear with n kept constant to the determined value in case of a Gaussian
smearing for B0

s . The shape is parametrized by a linear function.
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8 Complete Signal PDF for
B0

(s)→ µ+µ−

The complete signal probability density function (PDF) for B0
(s)→ µ+µ− is given by the

Crystal Ball function with the parameters estimated in Chapters 4 to 7 and normalized
to the mass window of ±60 MeV/c2 around the nominal B meson masses.

8.1 Summary of the Parameters

Tab. 8.1 summarizes the parameters describing the PDF’s.

Table 8.1: Values, statistical errors and systematic errors for the parameters α , σ , µ and n for the signal
PDF’s

Parametera) B0
s → µ+µ− B0→ µ+µ−

α 2.12±0.05±0.05 2.11±0.05±0.05

σ 27.4 ±0.3 ±0.9 MeV/c2 27.1 ±0.3 ±0.8 MeV/c2

µ 5362.5 ±1.6 ±2.4 MeV/c2 5275.6 ±0.9 ±1.5 MeV/c2

n 1.01±0.08±0.08 1.02±0.08±0.08

The correlations among the four parameters are determined from a toy Monte Carlo
experiment, using a Gaussian smearing of the true invariant mass from a B0

s → µ+µ−

Monte Carlo sample and fitting a single Crystal Ball function to the resulting distribu-
tion. This procedure is repeated 1’000 times to gain the correlation matrix (ρ)i j. The
results for B0

s are shown in (8.1), those for B0 in (8.2).

ρ=

(
ρα ,α ρα ,σ ρα ,µ ρα ,n
ρσ ,α ρσ ,σ ρσ ,µ ρσ ,n
ρµ ,α ρµ ,σ ρµ ,µ ρµ ,n
ρn,α ρn,σ ρn,µ ρn,n

)

ρB0
s
=


1.00 0.2062 −0.1755 −0.9202

0.2062 1.00 −0.1766 −0.1555
−0.1755 −0.1766 1.00 0.1338
−0.9196 −0.1555 0.1338 1.00

 (8.1)
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8 Complete Signal PDF for B0
(s)→ µ+µ−

ρB0 =


1.00 0.2016 −0.1725 −0.9196

0.2016 1.00 −0.1755 −0.1520
−0.1726 −0.1755 1.00 0.1315
−0.9196 −0.1520 0.1315 1.00

 (8.2)

8.2 Signal PDF for B0
(s)→ µ+µ−

At the time this thesis is written, the search for B0
(s)→ µ+µ− has been performed in six

equally distributed invariant mass bins in the ±60 MeV/c2 mass windows around the
nominal B meson masses.
The probability that a signal event – inside the mass window – falls into a certain one of
these six bins is given by the integral over the bin range of the signal PDF, normalized
to the mass window.
The statistical and systematic errors on these probabilities are obtained by a toy Monte
Carlo experiment in which the four parameters~a = (n,α , µ ,σ) are randomized by

~a′ = Σ ·~n +~a, (8.3)

where Σ is the Cholesky decomposition of the covariance matrix of these parameters (cf.
(8.1), (8.2)) and~n is a vector containing four normal distributed random numbers.

Fig. 8.1 shows the PDF and the probabilities for the different invariant mass bins for
B0

s → µ+µ−. The probabilities are summarized in Tab. 8.2. In Fig. 8.2 and Tab. 8.3 the
analogue properties are displayed for B0→ µ+µ−.
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8.2 Signal PDF for B0
(s)→ µ+µ−
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Figure 8.1: Signal PDF for B0
s → µ+µ− described by a Crystal Ball function. The horizontal lines

indicate the probability that an event falls into the corresponding invariant mass bin, the red band displays
the statistical error, the grey one the systematic error.

Table 8.2: Signal distribution in mass bins for B0
s → µ+µ−

Invariant mass bin Probabilitya)

[5306.3,5326.3] MeV/c2 0.078±0.008+0.017
−0.001

[5326.3,5346.3] MeV/c2 0.191+0.011
−0.010

+0.010
−0.002

[5346.3,5366.3] MeV/c2 0.287±0.003+0.006
−0.013

[5366.3,5386.3] MeV/c2 0.259+0.008
−0.009

+0.006
−0.011

[5386.3,5406.3] MeV/c2 0.140+0.008
−0.009 ±0.011

[5406.3,5426.3] MeV/c2 0.046±0.004+0.007
−0.006

a)The display scheme is ‘value’, ‘statistical error’, ‘systematic error’
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Figure 8.2: Signal PDF for B0 → µ+µ− described by a Crystal Ball function. The horizontal lines
indicate the probability that an event falls into the corresponding invariant mass bin, the red band displays
the statistical error, the grey one the systematic error.

Table 8.3: Signal distribution in mass bins for B0→ µ+µ−

Invariant mass bin Probabilitya)

[5219.5,5239.5] MeV/c2 0.075±0.005+0.010
−0.002

[5239.5,5259.5] MeV/c2 0.190±0.005±0.010

[5259.5,5279.5] MeV/c2 0.289±0.003+0.006
−0.007

[5279.5,5299.5] MeV/c2 0.261±0.005+0.006
−0.009

[5299.5,5319.5] MeV/c2 0.140±0.005+0.008
−0.009

[5319.5,5339.5] MeV/c2 0.045±0.003±0.005
a)The display scheme is ‘value’, ‘statistical error’, ‘systematic error’
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Summary
The data in Tab. A and B (same as in Tab. 8.2 and 8.3) provides the distribution of ex-
pected signal events in the six invariant mass bins within the mass window for the search
of B0

(s)→ µ+µ−. The results are based on a probability density function parametrized
by a Crystal Ball function. The parameters of the PDF have been extracted from colli-
sion data, using dimuon resonances and decay modes B0

(s)→ h+h− with h ∈ {K,π} as

well as from B0
s → µ+µ− Monte Carlo. Afterwards, the distribution of expected signal

events compared to the distribution of measured events is used as an input for the de-
termination of upper limits for the branching fractions B(B0

(s)→ µ+µ−) by the binned
CLs method.
The analysis for the data collected by LHCb in 2010 was finished in spring 2011 and
the published upper limits for the branching fractions are [2]:

B(B0
s → µ

+
µ
−) < 5.6 ·10−8 at 95% C.L.

B(B0→ µ
+

µ
−) < 1.5 ·10−8 at 95% C.L.

Table A: Signal distribution in mass bins for B0
s → µ+µ−

Invariant mass bin Probabilitya)

[5306.3,5326.3] MeV/c2 0.078±0.008+0.017
−0.001

[5326.3,5346.3] MeV/c2 0.191+0.011
−0.010

+0.010
−0.002

[5346.3,5366.3] MeV/c2 0.287±0.003+0.006
−0.013

[5366.3,5386.3] MeV/c2 0.259+0.008
−0.009

+0.006
−0.011

[5386.3,5406.3] MeV/c2 0.140+0.008
−0.009 ±0.011

[5406.3,5426.3] MeV/c2 0.046±0.004+0.007
−0.006

a)The display scheme is ‘value’, ‘statistical error’, ‘systematic error’

Table B: Signal distribution in mass bins for B0→ µ+µ−

Invariant mass bin Probabilitya)

[5219.5,5239.5] MeV/c2 0.075±0.005+0.010
−0.002

[5239.5,5259.5] MeV/c2 0.190±0.005±0.010

[5259.5,5279.5] MeV/c2 0.289±0.003+0.006
−0.007

[5279.5,5299.5] MeV/c2 0.261±0.005+0.006
−0.009

[5299.5,5319.5] MeV/c2 0.140±0.005+0.008
−0.009

[5319.5,5339.5] MeV/c2 0.045±0.003±0.005
a)The display scheme is ‘value’, ‘statistical error’, ‘systematic error’
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